
POLITECNICO DI TORINO

I Facoltà di Ingegneria
Corso di Laurea in Ingegneria Aerospaziale

Tesi di Laurea Specialistica

Development of the Attitude
Determination and Control
System for a nanosatellite

Relatori:
Ing. Sabrina Corpino
Ing. Fabrizio Stesina

Candidato:
Raffaele Mozzillo

Luglio 2012

Ai miei genitori e a zio Salvatore

Earth is the cradle of humanity but
one cannot live in the cradle forever.

From a letter, 1911
Konstantin Tsiolkovsky

Sommario

Il lavoro presentato in questa tesi è relativo al progetto e allo sviluppo di un
sistema attivo per la determinazione e il controllo dell’assetto di un nanosatellite (in
particolare della categoria Cubesat) ed ai test effettuati sui diversi componenti per
la futura integrazione a bordo del satellite 3STAR sviluppato da un team di studenti
del Politecnico di Torino.

Questo lavoro è una parte del progetto del CubeSat 3STAR coordinato dal
gruppo ASSET del Dipartimento di Ingegneria Meccanica e Aerospaziale su iniziativa
dell’Educational Office dell’ESA all’ESTEC. L’obiettivo è la realizzazione di una
missione spaziale completa, con grandissima importanza riservata al valore formativo
dell’intero progetto: la missione consiste nella realizzazione di un satellite della
categoria Cubesat che sarà parte di una costellazione di satelliti in orbita bassa
terrestre; esso dovrà essere compatibile con la rete GENSO e dovrà avere a bordo
un payload dedicato alla missione HUMSAT che prevede l’utilizzo dei satelliti per
migliorare le capacità di comunicazione nei Paesi in via di sviluppo e in quelle zone
colpite da calamità naturali o da eventi catastrofici che si trovino a dover gestire
delle emergenze contingenti. Inoltre essi saranno utilizzati per monitorare sensori
installati in posti remoti della Terra e per questo poco accessibili. A bordo è previsto
anche un altro payload, P-GRESSION, sviluppato dal Dipartimento di Elettronica
sempre del Politecnico di Torino.

Prima di analizzare nello specifico i punti trattati nella tesi, è importante sotto-
lineare alcuni aspetti del programma, anche non prettamente ingegneristici ma al
tempo stesso fondamentali:

• il progetto permette agli studenti di lavorare su qualcosa di pratico, dando così
la possibilità di testare in prima persona le metodologie di lavoro utilizzate
nelle aziende per i grandi satelliti, in quanto 3STAR, pur essendo un progetto
a basso costo, prevede fasi del tutto simili a quelle relative ai grandi progetti;

• il progetto da la possibilità agli studenti di lavorare in team, quindi di sperimen-
tare per la prima volta tutti gli aspetti del lavoro di gruppo, quali per esempio
la coordinazione dei diversi elementi del gruppo, l’aggiornamento a cadenza
fissa sullo status della propria parte del progetto, la necessità del rispetto di

iii

scadenze in quanto, essendo tutte le varie parti strettamente interconnesse,
l’avanzamento deve essere cooordinato;

• grazie alla partecipazione a diverse conferenze e workshop si entra in contatto
con altri team studenteschi che stanno lavorando su analoghi progetti per altre
università sia europee che mondiali, quindi questo permette di instaurare nuovi
rapporti e di entrare in contatto con altre “scuole di pensiero”.

Per quanto riguarda il lavoro discusso in questa tesi, in primis sono analizzati lo
standard CubeSat e la missione 3STAR (con uno sguardo a quello che è il background
sviluppato al Politecnico di Torino), in modo tale da poter portare a termine la prima
parte fondamentale del progetto, cioè la definizione dei requisiti e dei vincoli per la
missione sulla base degli obiettivi ed analizzando in dettaglio i documenti forniti.

Nel capitolo successivo sono introdotti tutti gli strumenti matematici utilizzati,
cioè i sistemi di riferimento, le tipologie di rappresentazione dell’assetto, le orbite e il
modo con cui determinarle, il campo magnetico terrestre ed infine un rapido sguardo
alle diverse metodologie di controllo utilizzabili (tra le quali PD, PID e LQR).

Segue la definizione dei requisiti del sottosistema ADCS ed i risultati dell’analisi
funzionale condotta su esso, che grazie alla simulazione su MATLAB®-Simulink®del
sistema quasi ideale, permette di determinare quale tra le varie configurazioni
ipotizzate, sulla base di opportuni parametri (peso, affidabilità, dimensioni, richiesta
di potenza elettrica, costo, accuratezza e tempo di stabilizzazione) deve essere
adottata per 3STAR .

Nel capitolo successivo, il modello matematico sviluppato in precedenza viene
reso molto più complesso con l’aggiunta dei vari disturbi simulati prima come rumori
bianchi e poi con modelli numerici sviluppati appositamente per IMU e magnetometro.
Inoltre sono aggiunti il filtro di Kalman ed una diversa tipologia di controllo, LQR,
per arrivare così alla simulazione definitiva utilizzando il modello completo. I risultati
mostrano una buona risposta del sistema, sia per quanto riguarda l’assetto raggiunto
che per il consumo di potenza elettrica.

Segue una fase di test durante la quale sono analizzati in laboratorio, realizzando
opportuni banchi prova (alcuni dei quali realizzati ex novo), i comportamenti dei
singoli componenti che saranno poi effettivamente utilizzati a bordo, per poi giungere
alla realizzazione di un codice in C da implementare sulla CPU di bordo.

Infine si valuta la risposta dell’intero sistema con una simulazione Hardware In
the Loop che permette di rappresentare l’ambiente spaziale a terra in modo tale
che il sistema possa essere testato con gli input che avrebbe in orbita, fornendo così
la possibilità di effettuare poi una ottimizzazione software ed hardware dell’intero
sottosistema ADCS. I risultati ottenuti con questa tipologia di simulazione (preceduta
da Software In the Loop) mostrano un buono comportamento, abbastanza simile a
quello ottenuto con modello MATLAB®-Simulink®.

iv

Abstract

The work presented in this thesis is related to the design and development of an active
system for the attitude determination and control of a nanosatellite (in particular
the category Cubesat) and to the tests performed on various components for future
integration on the 3STAR satellite developed by a team of students at Politecnico di
Torino.

This work is part of the 3STAR CubeSat project coordinated by ASSET Group
of Department of Mechanical and Aerospace Engineering on the initiative of ESTEC
ESA Educational Office. The objective is the realization of a complete space mission
with a great importance given to the educational value of the entire project: the
aim is to build a Cubesat satellite that will be part of a constellation of satellites in
low Earth orbit, it has to be fully compatible with the GENSO network and it will
have to carry a payload dedicated to the mission HUMSAT which provides the use
of satellites to improve communication in the developing countries and in those areas
affected by natural disasters or catastrophic events. In addition they will also be
used for monitoring sensors installed in remote places of the Earth and therefore not
easily accessible. On board there is also another payload, P-GRESSION, developed
by the Department of Electronics of Politecnico di Torino.

Before discussing specifically the points addressed in the thesis, it is important
to emphasize some aspects of the project, although not strictly engineering yet
fundamental:

• the project allows students to work on something practical, giving the chance to
see first hand the work methods used in companies for large satellites, because
3STAR , despite being a low-cost project, provides all phases of similar to those
for major projects;

• the project gives the opportunity for students to work in teams, so for the first
time to experience all aspects of teamwork, such as the coordination of the
various elements of the group, the update on fixed frequency about the status
of their part of project, the need for compliance with deadlines because all the
various parts are closely interrelated and so progress must be almost uniform;

v

• through participation in various conferences and workshops, there is the oppor-
tunity to get in touch with other student teams who are working on similar
projects for other universities in both Europe and the world, so this allows
the creation of new relationships and to get in touch with other “schools of
thought”.

Regarding the work discussed in this thesis, are primarily analyzed the CubeSat
standard and the 3STAR mission (with a look at what is the background developed
at the Politecnico di Torino), so it is possible to complete the first important part of
project, namely the definition of mission requirements and constraints based on the
mission objectives and analyzing in detail documents provided.

In the next chapter are introduced all the mathematical tools used, ie the reference
systems, the types of attitude representation, the orbits and the way we define them,
the Earth’s magnetic field and finally a quick look at different methods of control
used (including PD, PID and LQR).

Follows the definition of the requirements of ADCS subsystem and the results of
functional analysis conducted on it, that, thanks to the simulation on MATLAB®-
Simulink®of almost ideal system, allows to determine which of the various configura-
tions assumed, on the basis of appropriate parameters (weight, reliability, size, power
consumption, cost, accuracy and stabilization time) must be adopted for 3STAR .

In the next chapter, the mathematical model developed earlier is made more
complex by adding various disturbances simulated as white noise first and then with
numerical models developed specifically for IMU and magnetometer. Moreover are
added Kalman filter and a different type of control, LQR, so to get to the final
simulation using the complete model. The results show a good response of the system,
both as regards the attitude achieved that for the consumption of electric power.

A test phase follows, during which are analyzed in the laboratory, producing
appropriate test benches (some of which are made from scratch), the behaviors of
the individual components that will be actually used on board, and then there is the
creation of a code written in C to implement on the on-board CPU.

Finally, there is the evaluation of the response of the entire system with a
Hardware In the Loop simulation which allows to represent the space environment
on ground in such a way that the system can be tested with the inputs that it would
have in orbit, in order to perform a software and hardware optimization of the entire
ADCS subsystem. The results obtained with this type of simulation (preceded by
Software In the Loop) show a good behavior, quite similar to that obtained with
MATLAB®-Simulink®model.

vi

Contents

Sommario iii

Abstract v

Contents ix

List of Tables x

List of Figures xiii

List of Listings xiv

Acronyms xv

1 Introduction 1
1.1 The CubeSat project . 1
1.2 3STAR project . 2

1.2.1 Introduction and background 3
1.2.2 Mission statement . 4
1.2.3 Mission objectives . 4
1.2.4 Mission scenario . 6
1.2.5 Mission architecture . 6
1.2.6 Requirements and functional analysis 7
1.2.7 Mission profile and preliminary operative modes 10

2 Definition and reference model 12
2.1 Reference frames . 12

2.1.1 Inertial Reference Frame . 13
2.1.1.1 Earth-Centered Inertial (ECI) frame 13

2.1.2 Non-Inertial Reference Frame 14
2.1.2.1 Earth-Centered Earth-Fixed (ECEF) frame 14
2.1.2.2 North-East-Down (NED) frame 14

vii

2.1.2.3 Orbital frame . 16
2.1.2.4 Body frame . 16

2.2 Attitude representation . 17
2.2.1 Euler Angles . 17
2.2.2 Quaternions . 19

2.3 Orbit . 21
2.3.1 Orbital parameters . 22
2.3.2 How to determine the orbit? 24

2.3.2.1 Orbit propagation 24
2.3.2.2 NORAD . 26

2.4 Earth’s magnetic field . 26
2.4.1 Model . 28
2.4.2 Effects on satellites . 30

2.5 Control theory . 32
2.5.1 Main control strategies . 32
2.5.2 Types of Controllers . 33

3 System design 38
3.1 Requirements . 38
3.2 Functional analysis . 41
3.3 Mathematical model . 43

3.3.1 Dynamics . 43
3.3.2 Kinematics . 44
3.3.3 Torques acting on 3STAR . 45

3.3.3.1 Disturbance from the Earth’s gravitational field . . . 46
3.3.3.2 Disturbance from atmospheric drag 46
3.3.3.3 Disturbance from the satellite’s magnetic residual . . 46
3.3.3.4 Control with magnetic torquers 47
3.3.3.5 Control with reaction wheels 47

3.4 Trade-off of possible configurations 48

4 Development of the model, simulations and results 52
4.1 Linearization of the mathematical model 52

4.1.1 Kinematics . 53
4.1.2 Rotation matrix . 53
4.1.3 Angular velocity . 53
4.1.4 Gravitational torque . 53
4.1.5 Magnetic torquer . 54
4.1.6 Reaction wheel . 54
4.1.7 Complete model . 54

4.2 Magnetometer . 55

viii

4.3 IMU . 57
4.4 Kalman filter . 60

4.4.1 Generic dynamic system model 62
4.4.2 Equations . 63

4.4.2.1 Predict . 63
4.4.2.2 Update . 64

4.4.3 Results . 64
4.5 Controls . 64

4.5.1 Detumbling . 65
4.5.2 Stabilization . 66
4.5.3 Selector . 67

4.6 Complete model . 68

5 Hardware test 75
5.1 Brief description of ARM architecture and C programming language . 75
5.2 Inertial Measurement Unit . 78

5.2.1 Test bench . 78
5.2.2 Characterization . 81
5.2.3 C implementation . 85

5.3 PWM and ADC on ARM9 processor 87
5.3.1 Characterization . 90
5.3.2 C implementation . 97

6 Hardware In the Loop 103
6.1 C control logic . 106

6.1.1 Earth magnetic field and orbit propagation 109
6.1.2 Dynamics, kinematics and determination of q 112
6.1.3 Determination initial q . 112
6.1.4 Kalman filter . 112
6.1.5 Control . 113
6.1.6 PWM . 114

6.2 HIL procedure . 115
6.3 Results . 116

7 Conclusions 118

Bibliography 119

ix

List of Tables

1.1 Ground station parameters and indicative orbit parameters. 10
1.2 3STAR operative modes. 11
3.1 3STAR requirements. 39
5.1 Binary string output of IMU. 82
5.2 ASCII string output of IMU. 82
6.1 Binary string from HIL process to ARM RD129. 109
6.2 Binary string from ARM RD129 to HIL process. 109
6.3 ADCS HIL simulation procedure. 115

x

List of Figures

1.1 3U CubeSat specification drawing [1]. 2
1.2 3STAR logo. 3
1.3 3STAR project drivers. 5
1.4 Technical objectives definition. 5
1.5 STK simulation of 3STAR in the GEOID constellation. 7
1.6 3STAR mission architecture. 8
1.7 3STAR space segment preliminary architecture. 9
1.8 3STAR access area over Torino at different elevation angles above the

horizon. 10
2.1 ECEF reference frame. 15
2.2 NED reference frame. 15
2.3 Orbital reference frame. 16
2.4 Euler Angles . 18
2.5 Tait-Bryan Angles. 19
2.6 Various Earth orbits to scale. 23
2.7 Orbital parameters. 24
2.8 Orbit propagation. 25
2.9 Orbital speed and quote are constant because 3STAR has a circular

orbit. 26
2.10 TLE format where d is a decimal number, c is a character, s is a

symbol and e is the exponent. 27
2.11 Earth’s magnetosphere. 28
2.12 Secular variation from 2010 to 2015 [8]. 29
2.13 Declination errors estimation for year 2010. 30
2.14 Declination errors estimation for year 2015. 31
2.15 Magnetic field measured in orbital frame. 31
2.16 A typical block diagram of a PID controller. 35
3.1 ADCS functional tree. 42
3.2 Functions-devices matrix. 42
3.3 Preliminary scheme of ADCS. 43
3.4 Simulink model for the computation of the dynamics of 3STAR 44

xi

3.5 Simulink model for the computation of the kinematics of 3STAR . . . 45
3.6 Simulink model of magnetic torquers. 47
3.7 Simulink model of reaction wheel. 48
3.8 Trade-off decision tool. 51
4.1 Magnetometer implemented. 55
4.2 Results of different magnetometers. 57
4.3 Angular velocity measurements obtained with different models of IMU. 60
4.4 Particular of angular velocity measurements. 61
4.5 Schematic operation of a Kalman filter. 62
4.6 Results of Kalman filter. 65
4.7 Simulink model for the detumbling phase controller. 65
4.8 Passage from detumbling to stabilization phase. 66
4.9 Simulink model for the selector. 67
4.10 Simulink model for the complete control logic. 68
4.11 Simulink model for the orbit and the magnetic field. 69
4.12 Complete Simulink model for the ADCS of 3STAR 70
4.13 3STAR attitude . 71
4.14 Quaternions. 71
4.15 Angular velocity. 72
4.16 Reaction wheel torque. 72
4.17 Dipole moment required to magnetic torquers. 73
4.18 Power consumptions of MT. 74
5.1 ADCS scheme. 76
5.2 Process followed by ADCS. 77
5.3 Atomic IMU 6 Degrees of Freedom. 79
5.4 Some figures of test bench of the IMU. 80
5.5 Characterization curve of the engine. 81
5.6 Results of the characterization of the Atomic IMU 6 Degrees of Freedom. 83
5.7 Example of PWM. 88
5.8 Example of generation of PWM. 89
5.9 Some figures of CPU adopted and its development board. 91
5.10 Schema of pins of RD126 and RD129. 92
5.11 PWM output from pins. 92
5.12 ADCS board used to test PWM control with ARM9 93
5.13 Characterization curve Duty cycle - ADC of ADCS board. 98
5.14 Characterization curve Duty cycle - Voltage & Current of ADCS board. 98
6.1 Configuration of HIL simulation. 106
6.2 Photo of HIL simulation. 107
6.3 Configuration of SIL simulation. 107
6.4 Timeline of functions performed by HIL simulation. 110
6.5 Attitude trend obtained via HIL simulation (ARM RD129 log file). . 116

xii

6.6 Quaternion trend obtained via HIL simulation (ARM RD129 log file). 117
6.7 Angular velocity trend obtained via HIL simulation (ARM RD129 log

file). 117

xiii

List of Listings

5.1 C code used to calibrate IMU. 82
5.2 C code used to obtain measures from IMU. 85
5.3 Command used to try PWM output pin and ADC pin. 92
5.4 C code used to properly test RD129 (PWM and ADC). 93
5.5 C code used to properly set PWM and ADC. 99
6.1 Earth magnetic field and orbit propagation functions. 111
6.2 Determination initial q function. 112
6.3 Kalman filter function. 112
6.4 Control function. 113
6.5 Control selector code. 113
6.6 Control saturation code. 113
6.7 PWM function. 114
6.8 PWM refining code. 114

xiv

Acronyms

ADC: Analog to Digital Converter

ADCS: Attitude Determination & Control System

ASSET: AeroSpace System Engineering Team

C&DH: Command & Data Handling

COMSYS: COMmunication SYStem

COTS: Commercial Off The Shelf

DAC: Digital to Analog Converter

DELEN: Dipartimento di ELEttroNica

DIMEAS: Dipartimento di Ingegneria MEccanica ed AeroSpaziale

ECEF: Earth-Centered Earth-Fixed

EPS: Electrical Power System

ESA: European Space Agency

E-ST@R: Educational - SaTellite @ politecnico di toRino

ESTEC: European Space research and TEchnology Centre

GCS: Ground Control Station

GEO: Geostationary Earth Orbit

GEOID: Genso Experimental Orbital Initial Demonstrator

GSE: Ground Support Equipment

HEO: High Earth Orbit

xv

HUMSAT: HUManitarian SATellite

HIL: Hardware In the Loop

IARU: International Amateur Radio Union

IMU: Inertial Measurement Unit

LQE: Linear-Quadratic Estimator

LEO: Low Earth Orbit

LEOP: Launch & Early Orbit Phase

LQG: Linear-Quadratic-Gaussian control

LQR: Linear-Quadratic Regulator

MEO: Medium Earth Orbit

MGCS: Mobile Ground Control Station

MT: Magnetic Torquer(s)

NASA: National Aeronautics & Space Administration

NED: North East Down

NOAA: National Oceanic and Atmospheric Administration

NORAD: North American Aerospace Defense Command

OBC: On-Board Computer

P-GRESSION: Payload for Gnss REmote Sensing and SIgnal detectiON

PD: Proportional-Derivative control

PiCPoT: PIccolo Cubo del POlitecnico di Torino

PID: Proportional-Integral-Derivative control

PIL: Processor In the Loop

POLITO: POLItecnico di TOrino

PWM: Pulse-Width Modulation

P-POD: Poly-Picosatellite Orbital Deployer

xvi

QA: Quality Assurance

RAAN: Right Ascension of the Ascending node

RW: Reaction Wheel(s)

SD: Secure Digital

SI: Système International d’unitès

SIL: Software In the Loop

SP: Solar Panel(s)

TBC: To Be Confirmed

TBD: To Be Defined

VHF: Very High Frequency

WMM: World Magnetic Model

xvii

Chapter 1

Introduction

In the following chapters, the design and development of an Attitude Determination
and Control System for nano satellite applications will be treated. First the CubeSat
standard and the 3STAR program are introduced, then the useful coordinate systems
and reference model are analyzed. After the analysis of the orbit and the space
environment, the mathematical model and the control laws are developed and tested
through simulation with MATLAB®-Simulink®. After this, next phase about testing
hardware is descripted.

1.1 The CubeSat project
A CubeSat is a type of miniaturized satellite for space research that usually has
a volume of exactly one liter (10 cm cube), it weighs no more than one kilogram
and typically it uses commercial off-the-shelf electronics components. Beginning of
1999, California Polytechnic State University (Cal Poly) and Stanford University
developed CubeSat specifications to help universities around the world to perform
space science and exploration.

The price tag, far lower than most satellite launches, has made CubeSat a viable
option for schools and universities across the world. Because of this, a large number
of universities and some companies and government organizations are developing
CubeSats. Some applications of these satellites are:

• Earth remote sensing;

• materials degradation monitoring;

• electronics degradation check;

• biological studies.

1

1 – Introduction

The standard 10×10×10 cm basic CubeSat is often called “1U” CubeSat (meaning
one unit) but CubeSats are scalable along one axis, so by 1U increments: CubeSats
such as a “2U” CubeSat (20×10×10 cm) and a “3U” CubeSat (30×10×10 cm) have
been both built and launched. Since CubeSats are all 10×10 cm (regardless of length)
they can all be launched and deployed using a common deployment system, called
Poly-PicoSatellite Orbital Deployer (P-POD), also developed and built by Cal Poly.

Figure 1.1 – 3U CubeSat specification drawing [1].

1.2 3STAR project
3STAR is the new cubesat educational project being carried out at Politecnico di
Torino, and comes in response to the European Space Agency call for proposals for
the GENSO Experimental Orbital Initial Demonstrator (GEOID) mission, held by its
Education Office. GEOID is a mission that consists in launching and operating several
satellites in order to test the Global Educational Network for Satellite Operations
(GENSO) system and to serve as test-bed for the HUMSAT (HUManitarian SATellite)
international satellites constellation, that will act as communication support for
areas without infrastructures or for developing countries.

3STAR will be one of the first nine satellites of the GEOID constellation. From
the technical point of view 3STAR mission consists of a 3U cubesat orbiting the

2

1 – Introduction

Earth and acting as a data-relay platform and a space-based test bed for an Earth
remote sensing experiment. The payloads of this satellite are two: HUMSAT payload,
communication equipment (basically a UHF transceiver, an antenna and one data
storage device) that meets HUMSAT requirements, nonetheless remaining extremely
simple and reliable, and P-GRESSION (Payload for GNSS REmote Sensing and
SIgnal detectiON) experiment, whose main goal is to achieve measurements by means
of radio occultation techniques and scattering theory, using GNSS signals.

Figure 1.2 – 3STAR logo.

1.2.1 Introduction and background
3STAR is an educational project which is developed by a multidisciplinary team of
students from several engineering departments of Politecnico di Torino. In particular
the project will be developed at the Department of Mechanical and Aerospace Engi-
neering (DIMEAS) of Politecnico di Torino by the students of the AeroSpace Systems
Engineering Team (ASSET), in collaboration with students from the Electronics
Department (DELEN). The final goal is to test a network of ground stations, and
to provide data relay communication services for areas with scarce infrastructures
and/or affected by calamities.

At the Politecnico di Torino, several teams are involved in designing space
missions and systems. Among these, the AeroSpace Systems Engineering Team
(ASSET) of the DIMEAS, has been carrying out programs on small space platforms

3

1 – Introduction

for many years. In the last decade, the team has focused the attention on the
development of small satellites for educational and research purposes. The first
program was the PiCPoT nano-satellite, which has been completed in 2006. The
PiCPoT satellite was developed and launched, therefore representing a good success
for the developers’ team. Unfortunately, it never reached its intended orbit due
to a failure in the launch vehicle occurred a few seconds after liftoff. Despite the
unsuccessful launch, the project represents an important stepping stone in terms of
knowledge, experience and educational relevance.

The heritage of PiCPoT has been reaped by the e-st@r program, which has been
successfully launched on February 13, 2012. The e-st@r program, mainly educational,
was selected by the ESA Education Office as one of the nine university Cubesats on
the Vega maiden flight.

1.2.2 Mission statement
The mission objectives for the 3STAR project have been derived by means of the
typical system engineering process, which starts with the definition of the mission
statement. The mission statement for the 3STAR project can be summarized as
follows:

“The project aims at educating and inspiring space engineering stu-
dents on complex systems development and operations, international
cooperation and team work. The mission wants to contribute to the hu-
manitarian exploitation of Space, by supporting communications capability
in developing countries and/or allowing areas without infrastructure to
access space-based services, and to enhance the knowledge on remote
sensing applications for future small space missions.”

1.2.3 Mission objectives
The following objectives can be derived from the mission statement:

• the program shall have educational relevance: hands-on practice education and
training of students on a real spacecraft project;

• the mission shall carry one or more payload related to the peaceful and human-
itarian exploitation of space;

• the mission shall demonstrate one or more remote sensing applications based
on non-space qualified systems.

4

1 – Introduction

The 3STAR program is a project developed at university level, so the main objectives
are both the scientific and the educational relevance of the activity. The main con-
straint is represented by the limited available budget for the program development.
Figure 1.3 illustrates the guidelines which are assumed as high level objectives and
constraints for the program. Figure 1.4 shows the logical process implemented to

Figure 1.3 – 3STAR project drivers.

obtain the scientific objectives of the mission. Taking into account these assumptions
the mission and system requirements can be established, and the technical specifi-
cations can be derived for both the space and the ground segments. The primary

Figure 1.4 – Technical objectives definition.

objective for 3STAR program is to support and contribute to the HUMSAT mission.
In particular, several primary program sub-objectives can be defined:

• to provide telecommunications services in order to support to humanitarian
and emergency applications;

• to monitor parameters related to climate change;

• to settle international collaboration among universities and research centres
from all over the world.

5

1 – Introduction

Moreover, GEOID, strongly linked with HumSat program, adds the following objec-
tives:

• to validate the GENSO network on a large-scale basis;

• to promote high-level education on space systems.

An additional objective is to perform on orbit remote sensing measurements, employ-
ing different remote sensing techniques for Earth observation, atmosphere profiling
for climate studies and eventually warning services. Secondary objectives are the set
up of permanent space education project based on small-missions development and
the test of low cost technologies in orbit to facilitate future small space missions.

1.2.4 Mission scenario
A cubesat shall be inserted into a LEO by the beginning of 2013. The orbit is a SSO at
an altitude in the range 500-750 km. The launcher is still undefined, but typical launch
vehicles may be assumed for early design phases. Mission duration shall be longer
than 12 months. The Cubesat shall be operated from ground in a simply and cheap
way. The full compatibility with the GENSO network shall be demonstrated. High
grade of operations autonomy is desirable. Students shall be designers, developers,
manufacturers, operators and managers of the entire mission. The mission shall
demonstrate some kind of non-space technology and try to space-qualify them by
means of a relevant application. The primary payload shall be a HumSat compatible
equipment while, as additional payload, is considerd a remote sensing experiment.
The mission data shall be available to the Cubesat community, to the end users of
the HumSat project and to radio-amateurs union. No commercial purposes shall be
pursued. In Figure 1.5, it is shown the mission scenario involving satellites in the
GEOID constellation (amongst which the 3STAR cubesat) with some of the GENSO
ground stations on the surface of the Earth. As can be observed there will be three
orbital planes, with three satellites each, formed by three sun-synchronous orbits.
This allows a good compromise between coverage and repeat-time.

1.2.5 Mission architecture
Figure 1.6 shows the 3STAR mission architecture and its elements:

Space segment: it is composed by a 3U Cubesat encompassing 3-star bus and two
payloads (see Figure 1.7);

Ground segment: it is composed by a main ground station, a mobile and trans-
portable backup station and the GENSO stations network. Radio-amateurs
can receive Cubesat signal but they can’t command it;

6

1 – Introduction

Figure 1.5 – STK simulation of 3STAR in the GEOID constellation.

Subjects: they are the Earth surface and the Earth atmosphere, and sensor over
the surface;

Launch vehicle and launch site: they are not now defined as also the parameters
of LEO orbit;

Communications: they are maintained and managed according to the HUMSAT
requirements and IARU regulations;

Operations: they will be managed by operators at GENSO stations and by the
student at the main and backup stations.

1.2.6 Requirements and functional analysis
The mission requirements come from different sources, in particular from the HumSat
Mission Requirements Document [2] while the system requirements come from the
HumSat System Requirements Document [3]. To this set of requirements, other
requirements and constraints have been settled by the team in order to address
specific needs and interests. The system requirements and the low levels requirements
are derived by means of typical system engineering tools, such as the functional
analysis. It has been used to derive the lower level requirements for the system and
to determine which subsystems are needed to carry out the mission. The second

7

1 – Introduction

Figure 1.6 – 3STAR mission architecture.

iteration of the functional analysis allows to derive next lower level requirements for
equipment and components. Requirements for CubeSat (space segment) are divided
into:

General requirements: they apply to the CubeSat as a whole. In case the CubeSat
incorporates any deviations from these requirements, a DAR shall be submitted
and the waiver process carried out;

Mechanical requirements: this class of requirements applies to the CubeSat’s
geometry (dimensions, interfaces), its mass and inertia properties (mass, mo-
ments of inertia, COM location), and to the materials used to manufacture the
CubeSat;

Environmental requirements: this class of requirements derives from the envi-
ronmental conditions at launch and during operations in orbit. It includes the

8

1 – Introduction

Figure 1.7 – 3STAR space segment preliminary architecture.

vibration and acoustic environment encountered during the launch phase, and
the thermal environment during lifetime in orbit;

Interface requirements: this class of requirements applies to the CubeSat’s in-
terfaces with the P-POD, to other spacecraft and to the launch vehicle. It
includes physical, electrical, thermal and communications interfaces;

Functional requirements: they stem directly from the functional analysis. This
class of requirements establishes which functions the CubeSat and its sub-
systems shall carry out and how they shall be performed to accomplish the
intended mission. Performance requirements are included;

Operational requirements: this class of requirements applies to the operation
phase and includes operative modes implementation from ground, on orbit
operations in general, communication between the CubeSat and the GCS and
related aspects (frequencies licences and coordination, etc), and debris issues;

Configuration requirements: this class of requirements applies to the configura-
tion of the CubeSat. It includes requirements such as the components list and
for the assembly/disassembly of the CubeSat;

9

1 – Introduction

Maintenance: integration and logistic requirements. This class of requirements
applies to the operations to be accomplished in order to maintain the CubeSat
in the specified flight-ready-condition during storage before launch.

1.2.7 Mission profile and preliminary operative modes
Preliminary mission simulations (Figure 1.8) have been performed with a reference
orbit and a reference ground station (Table 1.1).

Torino ground station
Latitude [deg] 45◦03’N
Longitude [deg] 7◦40’E
Altitude [km] 0.3
Orbit parameters (they are indicative)
Semi-major Axis [km] 6978.137
Circular Altitude [km] 600
Inclination [deg] 97.40
Eccentricity [-] 0

Table 1.1 – Ground station parameters and indicative orbit parameters.

Figure 1.8 – 3STAR access area over Torino at different elevation angles above the
horizon.

10

1 – Introduction

The satellite may be operated in different ways, depending on which phase of
its mission is exploited. 3STAR is intended to be part of the HumSat mission, but
it also has its own independent remote sensing payload. It is worth to be notice
that the additional payload can also support the HumSat mission objectives to some
extent. A set of operative modes may be defined and they are given in Table 1.2.

Table 1.2 – 3STAR operative modes.

Operative mode Description Payload
LEOP Cubesat right after launch and dur-

ing commissioning is tested to prepare
next mission phase

none

HUMSAT mission Cubesat used as an element of the
HumSat constellation

HUMSAT

P-GRESSION mission Cubesat used as a remote sensing
space platform

P-GRESSION

Basic mission Cubesat used as space test bed for
COTS equipment

3STAR

Safe mission Off-normal mode, used in case the
cubesat presents some failures and
needs to be restored

none

Dormant During launch the Cubesat systems
are deactivated. The Cubesat may be
turned on the dormant mode also upon
request of international authorities or
HumSat mission control board

none

11

Chapter 2

Definition and reference model

The mathematical model of the satellite and its environment can be developed in
a number of different reference frames and methods to represent attitude. In this
chapter a short introduction to methods and mathematical tools is given.

2.1 Reference frames
It is possible to identify different types of coordinate systems based on the number
and type of the coordinates. The most common three-dimensional coordinate systems
are:
Cartesian: also called rectangular, it is formed by three perpendicular lines whose

intersection identify the origin. Each of the three lines, normally indicated as
X, Y and Z, has an associated unit and direction. The generic coordinates of
a point in the space are indicated with the letters x , y and z and the three
coordinates are written with the symbol (x,y,z).

Cylindrical: in this reference system the coordinates are ρ , φ and z. Considering
a generic point P, and its projection Q on the X-Y plane, the coordinate z
indicates the distance PQ, ρ is the distance from the origin and the point Q,
while φ is the angle between the vector ~ρ and the X axis.

Spherical: it is based on the coordinates ρ, θ and φ.Considering a generic point P,
and its projection Q on the X-Y plane, the coordinate ρ indicates the distance
of P from the origin, θ is the angle between the vector ~ρ and the Z axis and,
calling ~ρ′ the vector that connect the origin and the point Q, φ is the angle
that this vector form with the X axis.

It is possible to describe the same point in more than on coordinate system, so a set
of transformations exist in order to be able to change from a coordinate system to
another. Now the different frames used in this report are defined.

12

2 – Definition and reference model

2.1.1 Inertial Reference Frame
An Inertial reference frame is a coordinate system in which is verified Newton’s first
law: with an acceptable approximation the so called fixed star reference frame is
considered inertial and it includes the Sun, the stars and every other body with a
uniform rectilinear motion as regards to it (not accelerating or rotating).

2.1.1.1 Earth-Centered Inertial (ECI) frame

Considering the Earth as third body, the reference frame obtained can not be
considered as a real Inertial reference frame because of Earth’s revolution and
rotation movements. In particular, the rotary motion submit the objects on the
surface of the Earth far from the poles to a little centrifugal force. However this
acceleration can be neglected in some cases and the Earth considered, with a good
approximation, as an Inertial reference frame (called ECI).

The ECI frame is an inertial frame used for navigation. It is fixed in space and
its origin is located at the center of the Earth with the Z-axis pointing towards the
North Pole. The X-axis points towards vernal equinox, the point where the plane of
the Earth’s orbit around the Sun crosses the Equator going from south to north, and
the Y-axis completes the right hand Cartesian coordinate system. All the different
motions of the satellite could be presented in this frame, but only the velocity of
the Orbit frame and the motion of the Sun is directly compared to this frame. The
frame is denoted I.

The rotary motion, present in reality, brings objects far from the equator to
the so called Coriolis force that causes a deviation of the motion of every objects
towards right in the north hemisphere and towards left in the south hemisphere, as
demonstrated by the well known Foucault pendulum. For every objects orbiting the
Earth it is possible to define a Inertial reference frame based on the ECEF reference
frame (2.1.2.1) with the following rotation matrix:

RE
I =

 cos(α) sin(α) cos(β) sin(α) sin(β)
− sin(α) cos(α) cos(β) cos(α) sin(β)

0 − sin(β) cos(β)

 (2.1)

where α is the angle given by ωet, with ωe the Earth rotational speed and t the time,
and β is the angle given by the following equation:

β =
(
23.439281083− 46.815

6300 Juliancenturies
) π

180 (2.2)

in which Juliancenturies is:

Juliancenturies = day2000− 2451545
36525 (2.3)

13

2 – Definition and reference model

day2000 =2451543.5 + (year− 2000)365+

+ 1 + floor
(year− 2000

4
)

+ day
(2.4)

2.1.2 Non-Inertial Reference Frame
A Non-Inertial reference frame is a coordinate system in which the description of the
dynamic of objects does not verify the principle of inertia. It is a system in which an
object subject to a resultant of forces equal to zero however has a non-uniform motion.
All and only the reference frames that move of accelerated motion in reference to
the fixed star reference frame have this property and can be defined as Non-Inertial.

2.1.2.1 Earth-Centered Earth-Fixed (ECEF) frame

The ECEF reference frame has its origin located in the center of the Earth but the X
and Y axes rotate with the Earth relative to the ECI frame. This rotation is around
the Z-axis, both of the ECI and the ECEF frame, and has a rate of

ωe ≈
1 + 365.25cycles

(365.25)(24)h
2πrad/cycle

3600s/h ≈ 7.292115× 10−5rad/s. (2.5)

The Z-axis points towards the North Pole, X-axis points toward the intersection
between the Greenwich meridian and the Equator, which is at 0◦ longitude and 0◦
latitude, and the Y-axis completes the right handed orthogonal system. The frame
is denoted E.

2.1.2.2 North-East-Down (NED) frame

The North-East-Down reference frame is one of the Geodetic coordinate systems. It
is a local reference frame and it depends on the position on the Earth. The X-Y
plane coincides with the local horizon and it has unit vectors pointing the local North
and East; the Z axis completes the right-handed triad pointing toward the center of
the Earth (Down). Thanks to this property the NED reference frame is one of the
most utilized for Earth surface studies. The frame is denoted N.

It is possible to define a rotation matrix in order to pass from the ECEF to the
NED reference frame as:

RN
E =

− sin(lat) cos(lon) − sin(lat) sin(lon) cos(lat)
− sin(lon) cos(lon) 0

− cos(lat) cos(lon) − cos(lat) sin(lon) − sin(lat)

 (2.6)

14

2 – Definition and reference model

Figure 2.1 – ECEF reference frame.

Figure 2.2 – NED reference frame.

15

2 – Definition and reference model

2.1.2.3 Orbital frame

The origin of this frame coincides with the center of mass of the satellite. It rotates
relative to the ECI frame, with a rate of ωo depending on the altitude of the orbit.
The X-Z plane is the orbital plane with unit vectors pointing one in the direction
of the orbital velocity of the satellite and the other as the local vertical, while the
Y-axis is orthogonal to this plane and complete the right-handed triad. The frame is
denoted O.

It is possible to convert the coordinates of a point from the Orbital to the Inertial
reference frame with the following rotation matrix:

RI
O =

c(Ω)c(ω)− s(Ω)s(ω)c(i) −c(Ω)s(ω)− s(Ω)c(ω)c(i) s(Ω)s(i)
s(Ω)c(ω) + c(Ω)s(ω)c(i) −s(Ω)s(ω) + c(Ω)c(ω)c(i) −c(Ω)s(i)

s(ω)s(i) c(ω)s(i) c(i)

 (2.7)

with c and s compact notations for cos and sin. The other variables here used are
defined in Section 2.3.1, in which is treated the description of the orbit.

Figure 2.3 – Orbital reference frame.

2.1.2.4 Body frame

The body frame is fixed to the satellite and for practical reasons the origin is placed
at the satellite’s center of mass. The axes are locked in the satellite, X-axis is forward,

16

2 – Definition and reference model

Z-axis is downwards and the Y-axis completes the right-hand orthogonal system.
This frame is denoted B.

In order to transform a set of coordinates from the Body to the Orbital reference
frame, or vice versa, the introduction of a rotation system is needed. The classi-
cal rotations used to describe these transformations are based on the use of the
quaternions or the Euler Angles, both of them are described below.

2.2 Attitude representation
There are some different ways to represent the attitude of the satellite in a reference
frame. These, along with tools to convert between the frames, are described here.

2.2.1 Euler Angles
The Euler Angles can be used to describe the angular position of a Body reference
frame XYZ, with a set of rotations, relative to another reference frame xyz considered
fixed. Here only rotations are considered, so the two reference frame are taken so
that the origin is the same for both of them. If the x-y and X-Y planes do not
coincide, a line of intersection will exist and it is called line of nodes (N). If they
coincide then the line of nodes is taken coincident with the X axis. The Euler Angles
are:

• α is the angle between the line of nodes and the x-axis, it is called precession;

• β is the angle between the z-axis and the Z-axis , it is called nutation;

• γ is the angle between the line of nodes and the X-axis, it is the intrinsic
rotation.

The Euler Angles allow a representation of the rotation matrix in a easy form
obtained with a multiplication of three rotation matrices. In other words the complete
rotation described above can be done in three distinct passages:

• rotation around the z-axis of an angle α, to obtain the x-axis coinciding with
the line of nodes N:

Rα =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 (2.8)

• rotation around the line of nodes N of an angle β:

Rβ =

1 0 0
0 cos(β) sin(β)
0 − sin(β) cos(β)

 (2.9)

17

2 – Definition and reference model

Figure 2.4 – Euler Angles: the fixed reference frame (xyz) is shown in blue, the
rotated reference frame (XYZ) is shown in red and the line of nodes is
shown in green.

• rotation around the Z-axis of an angle γ:

Rγ =

 cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1

 (2.10)

The rotation described above can be formalized as:X̂Ŷ
Ẑ

 = RγRβRα

x̂ŷ
ẑ

 (2.11)

x̂ŷ
ẑ

 = RT
αRT

βRT
γ

X̂Ŷ
Ẑ

 (2.12)

The sequence described above is only one of the twelve possible sequences describing
same rotation. It is called ZXZ from the axes around which the rotations take place.
The other possibilities are XZX, XYX, YXY, YZY, ZYZ, XZY, XYZ, YXZ, YZX,
ZYX and ZXY. These sequences are obtained from all the possible permutations of
not consecutive equal axes.

18

2 – Definition and reference model

A particular variant of the Euler Angles, used in aeronautic and robotic, is the
Tait-Bryan Angles (Figure 2.5). In this case the angles ψ, φ and θ are named yaw,
roll and pitch respectively.

Figure 2.5 – Tait-Bryan Angles.

2.2.2 Quaternions
The main reason for using unit quaternions instead of Euler parameters is to avoid
singularity which can occur when using Euler angles. In math quaternions are a
numerical system used in order to extend the complex numbers. They were introduced
for the first time by Sir William Rowan Hamilton in 1843 and successively applied to
mechanics in three-dimensional spaces. One of the principal properties of quaternions
is the fact that the product of two quaternions is not cumulative, which means that
the product depends on the order of its terms. Hamilton defined a quaternion as the
quotient of two vectors, but they can be also represented as sum of a scalar number
and a vector. Quaternions are used vastly by theoretical and applied math, specially
for rotations in the three-dimensional space. A generic quaternion can be written as:

q̄ = q0 + q1î+ q2ĵ + q3k̂ = a+ b̂i+ cĵ + dk̂ (2.13)

with a, b, c and d real numbers. Quaternions contain naturally real numbers if b =
c = d = 0 (q = a) and complex numbers if c = d = 0 (q = a + b̂i).

From the Euler theorem, that guarantees the possibility to rotate a fixed reference
frame on another arbitrary reference frame with a simple rotation around an axis ā

19

2 – Definition and reference model

(also called Euler rotation axis) fixed in both reference frames, it is possible to adopt
quaternions to define any change of reference system in the three-dimensional space.
Thanks to their properties it is possible to represent uniquely any rotation without
having degenerating points, that are points in which at least a parameter lose its
meaning.

The rotation of an angle α around a generic axis ū can be described introducing
the Euler parameters and obtaining the quaternion:

q̄ = cos(α2) + ū sin(α2) (2.14)

or in matrix form:

q̄ =
[
q0
~q

]
=


q0
q1
q2
q3

 =


cos(α2)
û1 sin(α2)
û2 sin(α2)
û3 sin(α2)

 (2.15)

Using quaternion above introduced, it is possible to define rotation matrix as:

Rq0,~q = I3x3 + 2q0S(~q) + 2S2(~q) (2.16)

where S(~q) is the skew-symmetric matrix, that is:

S(~q) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (2.17)

The Equation 2.16 allows to write rotation matrix from body to orbital frame as:

RO
B = 13x3 + 2q0S(~q) + 2S2(~q) (2.18)

so a representation of the rotation matrix from Orbital to Body frame can be
calculated as follow:

RB
O = (RO

B)T =

q
2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2.19)

This rotation matrix can also be written as:

RB
O =

[
cB1 cB2 cB3

]
(2.20)

where cBi =
[
cBix cBiy cBiz

]T
are column vectors containing directional cosines.

20

2 – Definition and reference model

2.3 Orbit
Based on the energy of the orbiting body, orbits can be closed and periodic or open
and non-periodic [4]. It is possible to define different orbits:

Elliptic: the orbit is closed and it is an ellipse if the kinetic energy is less than the
potential energy of the body. The orbits of the planets of the Solar System
and of their satellites are elliptical. The circular orbit is a particular case of
elliptic orbit;

Hyperbolic: the orbit is open and it is an hyperbole if the kinetic energy is more
than the potential energy of the body. Orbits of the space probes sent out
of the Solar System and some of probes sent towards external planets are
hyperbolic;

Parabolic: if the kinetic energy is the same as the potential energy then the
trajectory of the body is a parabola and this particular orbit is the type
between the two families of closed and open orbits.

Spacecraft can be put into a number of different closed orbits around a planet. These
are defined by a number of orbital characteristics, such as the height above the
planet’s surface, the inclination (a Keplerian elements descripted in 2.3.1) to the
planet’s equator and the direction in which the spacecraft orbits the planet [5]:

• Inclination

equatorial: an orbit whose inclination is equal to zero with respect to equator
of planet around which the satellite orbits;

near equatorial: an orbit whose inclination with respect to the equatorial
plane is nearly zero;

polar: an orbit that passes above or nearly above both poles of the planet on
each revolution, so it has an inclination of (or very close to) 90 degrees;

polar Sun-synchronous: a nearly polar orbit that passes the equator at the
same local solar time on every pass (SSO);

• Altitude (see Figure 2.6)

LEO: low-Earth orbit, as the name implies, this is the lowest altitude a
spacecraft must achieve in order to orbit the Earth. The altitude is
between 200 and 2000 km;

21

2 – Definition and reference model

GEO: geostationary (or geosynchronous) orbit, this is a much higher orbit
and so takes a lot more energy to reach. However, once at the altitude of
35786 km, it takes the spacecraft a full 24 hours to orbit the Earth. Thus,
the spacecraft moves at the same speed with which the Earth rotates and
therefore appears to “hover” over the same spot on the ground;

MEO: medium-Earth orbits, these are between LEO and GEO orbits;
HEO: high-Earth orbits, normally are highly elliptical, but always at altitudes

over the GEO;

• Direction

prograde: any orbit in which the spacecraft moves from west to east is termed
prograde. This is the usual direction of rotation in our Solar System.
Only a handful of objects orbit or rotate in the opposite direction;

retrograde: any orbit in which the spacecraft moves from east to west. This is
the less usual direction in the Solar System; however, it is not impossible.
For example, Venus has retrograde spin and some comets (notably comet
Halley, which was encountered by ESA’s Giotto spacecraft in 1986) also
has a retrograde orbit.

2.3.1 Orbital parameters
The orbital elements or Keplerian orbital parameters are a set of parameters necessary
in order to determine uniquely an orbit, given an ideal system of two masses that
follow the Newton law of motion and the universal gravitational law. The set of
traditional orbital parameters is:

e: eccentricity, that is (where a is the semimajor-axis and b is the semiminor-axis)

e =
√

1− b2

a2 ; (2.21)

i: inclination of the orbital plane referred to the equatorial plane;

Ω: Right Ascension of the Ascending node, RAAN, that is the angle, on the equatorial
plane, between the First Point of Aries and the ascending node;

ω: argument of the periapsis, that is the angle, on the orbital plane, between the
ascending node and the eccentricity vector. The eccentricity vector has the
same direction as the line of apses (periapsis-apoapsis) and points from the
apoapsis towards the periapsis;

22

2 – Definition and reference model

Figure 2.6 – Various Earth orbits to scale: innermost, the red dotted line represents
the orbit of the International Space Station (ISS); cyan represents
low Earth orbit, yellow represents medium Earth orbit, and the black
dashed line represents geosynchronous orbit. The green dash-dot line
represents the orbit of Global Positioning System (GPS) satellites.

T: orbital period, it represents the time required to complete an orbit. It is related
to the semimajor-axis using Kepler’s third law:

K = T 2

a3 (2.22)

where K is the proportionality constant, almost the same for any planet around
the Sun;

M: mean anomaly, it defines the position of the satellite in the ellipse and it is an
angle that increases uniformly in time from 0◦ to 360◦ during one revolution.

The orbital period T can be replaced by the mayor semiaxis a, while the mean
anomaly M by the true anomaly ν: this is the only variable parameter of the six
because it describes position of the orbiting object on the orbit plane as an angle
between the same object and the periapsis.

23

2 – Definition and reference model

Figure 2.7 – Orbital parameters.

2.3.2 How to determine the orbit?
There are different ways to determine the orbit with different accuracies [6]:

real-time orbit determination: it provides the best estimate of where a satellite
is at the present time and may be important for spacecraft and payload
operations, such as accurate pointing at some target;

definitive orbit determination: it is the best estimate of the satellite position and
orbital elements at some earlier time, it is done after gathering and processing
all relevant observations;

orbit propagation: it refers to integrating the equations of motion to determine
where a satellite will be at some other time. Usually orbit propagation refers
to looking ahead in time from when the data was taken and is used either
for planning or operations. Occasionally orbits will be propagated backward
in time, either to determine where a satellite was in the past or to look at
historical astronomical observations in the case of comets or planets.

We focus on the last type and there is also the possibility of using NORAD (more
info in 2.3.2.2)

2.3.2.1 Orbit propagation

As just seen an orbit is completely defined given six orbital parameters, however this
results as an ideal orbit in which are not considered the disturbances induced by

24

2 – Definition and reference model

external factors. In the following treatment the disturbances induced on the orbit by
the gravitational attraction of Earth, Moon and Sun and the presence of residual
atmosphere that causes, by aerodynamic drag, the slowdown of the satellite are not
considered. The orbital propagation follow the procedure below:

1. assignment of the orbital parameters, of the time and of the Earth constants;

2. calculation of the orbit properties from the orbital parameters;

3. variation of the orbital properties as function of the aerodynamic drag;

4. variation of the orbital properties as function of the gravitational attraction of
Earth, Moon and Sun;

5. calculation of Ω (argument of latitude), distance from the Earth center and ν;

6. calculation of latitude and longitude from i, Ω and the argument of longitude;

7. calculation ECEF coordinates from latitude, longitude and distance from the
Earth center.

In Figure 2.8 it is possible to observe the orbit propagation during 30 hours following
the launch.

Figure 2.8 – Orbit propagation.

25

2 – Definition and reference model

Figure 2.9 – Orbital speed and quote are constant because 3STAR has a circular
orbit.

2.3.2.2 NORAD

The North American Aerospace Defense Command is a joint organization of Canada
and the United States that provides aerospace warning, air sovereignty and defense
for the two countries. It was founded on May 12, 1958 (an effect of the Cold War)
as a joint command between the governments of Canada and the United States, as
the North American Air Defense Command.

In response to the emergence of the intercontinental ballistic missile and submarine-
launched ballistic missile threat, a space surveillance and missile warning system
was built to provide worldwide space detection, tracking and identification. The
extension of NORAD’s mission into space led to a name change, the North American
Aerospace Defense Command in March 1981.

Considering the surveillance of the orbital objects around Earth, the NORAD,
tracking every object bigger than a tennis ball, obtains for each of them a data set
that describe its orbit. To simplify the notation also this data set is called TLE (see
Figure 2.10).

2.4 Earth’s magnetic field
Geomagnetism has a great importance for life on Earth. In fact, it extends for tens
of thousands of kilometres into space, forming an area called the magnetosphere
whose presence creates a sort of electromagnetic “shield” that deflects and reduces

26

2 – Definition and reference model

Figure 2.10 – TLE format where d is a decimal number, c is a character, s is a
symbol and e is the exponent.

cosmic rays and, in general, all charged particles.
The geomagnetic field was the first Earth’s field to be theorized and described,in

fact its discovery is attributed to the observations of Pierre de Maricourt, French
scientist of the thirteenth century, in his “Epistula de magnete (Letter on the magnet)”,
written in 1269.

The unit of the geomagnetic field, in International System of Units (SI, from
French Système international d’unités), is Tesla (T), but being very small values of
the field in this unit, in practice it is often used its submultiple nano-Tesla (nT),
equal to 10−9 T, or the Gauss (G), equal to 10−4 T. From the equator to the poles,
on the Earth’s surface, the value of the magnetic field varies from about 20000 nT to
about 70000 nT. The Earth’s magnetic field is not constant, but undergoes significant
changes in both direction and intensity. They have led, during the geological eras,
to the drift of magnetic poles and repeated phenomena of inversion of the field,
with mutual exchange of North and South magnetic poles. The Earth’s magnetic
field is subject to continuous variations of intensity and direction due to local or
external causes. Long-term changes (5-10 years), also called secular variations, are
due to changes in the deep sources and they are recognized by the data of magnetic
observatories, archaeological and geological records. Changes in short term (a few
minutes up to 5 years) are of external origin. A third category is that of very long
period changes, related to the solar cycle of 11 years.

The secular variations are divided into a contribution due to the bipolar field and
one due to the non-bipolar field (probably electric currents in the zones of contact
between core and mantle as shown by investigations of magnetic tomography).

In summary, the secular variation is characterized by a average annual decrease
in the dipole moment of 0.05%, a westward precession of the axis of dipole of 0.08◦
each year, an annual northward shift of 0.01◦, drift of the western non-bipolar field
of 0.2-0.3◦ per year and a variation of intensity of the field with a rate of about
10 nT per year. As for polarity reversals of the magnetic field (every 5000-10000

27

2 – Definition and reference model

Figure 2.11 – Earth’s magnetosphere.

years), they involve rapid changes in the declination of 180◦ and reversal of the tilt
sign [9] [10].

2.4.1 Model
As it has been said so far, we understand that to properly model the Earth’s magnetic
field it is not enough an approximate model on theoretical grounds only, which could
be the simple magnetic dipole model. It was therefore decided to rely on model
WMM (World Magnetic field model) developed by the National Geophysical Data
Center of the NOAA (National Oceanic and Atmospheric Administration) which
is released every five years (the last one, WMM2010, was published 12/2009 [11]).
These updates are designed so as to take into account with good approximation the
variations of the geomagnetic field using linear approximations based on observations
made in previous years and extrapolated for the next five years. In the Figure 2.13
and Figure 2.14 the errors estimation of declination of the model in 2010 and 2015
are shown.

The model is based on the calculation of main magnetic field as potential field
written as spatial gradient of a scalar potential field described by an expansion to
twelfth grade of Earth’s magnetic field based on time-varying Gaussian coefficients.
Secular changes are described similarly as above for the following five years and

28

2 – Definition and reference model

Figure 2.12 – Secular variation from 2010 to 2015 [8].

then superimposed on the main field as function of the input time (for the complete
discussion of the model refers to: The US/UK World Magnetic Model for 2010-
2015 [12]). Below there is a brief analysis of magnetic field model used by analyzing
the various parts and in Figure 2.15 it is possible to see the variation of magnetic
field in orbit:

• input

latitude: from -90◦ to 90◦;

29

2 – Definition and reference model

Figure 2.13 – Declination errors estimation for year 2010.

longitude: from -180◦ to 180◦;
altitude: from the sea level to 1000 km;
date: from the base year of the model to five year later.

• output

F: total intensity of the magnetic field;
H: horizontal intensity;
X: North intensity;
Y: East intensity;
Z: vertical intensity;
I: geomagnetic inclination;
D: geomagnetic declination;

2.4.2 Effects on satellites
We can identify two main effects on a satellite in orbit due to the Earth’s magnetic
field. The first is the creation of a disturbance torque due to the interaction between

30

2 – Definition and reference model

Figure 2.14 – Declination errors estimation for year 2015.

Figure 2.15 – Magnetic field measured in orbital frame.

the Earth’s magnetic field and the magnetic field generated by the satellite itself,
while the second is the shielding from the radiations and the charged particles from
outside. If the first effect is clearly negative, and we will see in the section on
the attitude control how to deal with it, on the contrary the second improves the
conditions of the satellite in orbit allowing for greater operational life.

31

2 – Definition and reference model

2.5 Control theory
Control theory is an interdisciplinary branch of engineering and mathematics that
deals with the behavior of dynamical systems. The desired output of a system is
called reference. When one or more output variables of a system need to follow a
certain reference over time, a controller manipulates the inputs of a system to obtain
the desired effect on the output of the system.

In control theory there are two basic types of control. These are feedforward1

and feedback2. Feedback control usually results in intermediate periods where the
controlled variable is not at the desired setpoint. Feedforward control can avoid
the slowness of feedback control. With feedforward control, the disturbances are
measured and accounted for before they have time to affect the system. The difficulty
with feedforward control is that the effect of the disturbances on the system must be
accurately predicted, and there must not be any unmeasured disturbances.

2.5.1 Main control strategies

To achieve the benefits of feedback control (controlling unknown disturbances and
not having to know exactly how a system will respond to disturbances) and the
benefits of feedforward control (responding to disturbances before they can affect
the system), there are some combinations of feedback and feedforward control that
can be used. Here there is a brief description for some of them:

Adaptive control: it uses on-line identification of the process parameters, or mod-
ification of controller gains, thereby obtaining strong robustness properties.
Adaptive controls were applied for the first time in the aerospace industry in
the 1950s, and they have found particular success in that field.

Hierarchic control: it is a type of control system in which a set of devices and
governing software is arranged in a hierarchical tree. When the links in the
tree are implemented by a computer network, then hierarchical control system
is also a form of Networked control system.

1Feedforward is a term describing an element or pathway within a control system which passes a
controlling signal from a source in the external environment of control system to a load elsewhere
in its external environment. A control system which has only feedforward behavior responds to its
control signal in a predefined way without responding to how the load reacts.

2Feedback describes the situation when the output from an event or phenomenon in the past will
influence an occurrence of the same event in the present or future. When an event is part of a chain
of cause-and-effect that forms a circuit or loop, then the event is said to “feed back” into itself.

32

2 – Definition and reference model

Intelligent control: it uses various AI computing approaches like neural networks,
Bayesian probability, fuzzy logic, machine learning, evolutionary computation
and genetic algorithms to control a dynamic system.

Robust control: it deals explicitly with uncertainty in its approach to controller
design. Controllers designed using robust control methods tend to be able
to cope with small differences between true system and nominal model used
for design. The early methods of Bode and others were fairly robust; the
state-space methods invented in the 1960s and 1970s were sometimes found
to lack robustness. A modern example of a robust control technique is H-
infinity Loop-Shaping developed by Duncan McFarlane and Keith Glover of
Cambridge University, United Kingdom. Robust methods aim to achieve robust
performance and/or stability in the presence of small modelling errors.

Stochastic control: it deals with control design with uncertainty in the model. In
typical stochastic control problems, it is assumed that there exist random noise
and disturbances in the model and the controller so the control design must
take into account these random deviations.

Optimal control: it is a particular control technique in which the control signal
optimizes a certain “cost index”. Two optimal control design methods have
been widely used in industrial applications, as it has been shown they can
guarantee closedloop stability. These are Model Predictive Control (MPC) and
Linear-Quadratic-Gaussian control (LQG). The first can more explicitly take
into account constraints on the signals in the system, which is an important
feature in many industrial processes. However, the “optimal control” structure
in MPC is only a means to achieve such a result, as it does not optimize a
true performance index of the closed-loop control system. Together with PID
controllers, MPC systems are the most widely used control technique in process
control.

2.5.2 Types of Controllers

Tuning a control loop is the adjustment of its control parameters to reach the
optimum values for the desired control response. Stability is a basic requirement, but
beyond that, different systems have different behavior, different applications have
different requirements. Furthermore, some processes have a degree of non-linearity
and for this parameters that work well at full-load conditions, don’t work when
the process is starting up from no-load. Some of the types of controllers are now
presented with a brief description:

33

2 – Definition and reference model

Open-loop: it can be used in systems sufficiently well-characterized as to predict
what outputs will necessarily achieve the desired states. Drawbacks of open-
loop control is that it requires perfect knowledge of the system and it assumes
there are no disturbances to the system;

Proportional: it is also called P controller. With this type of controller, the
controller output is proportional to the error of the measured variable. In
feedback control, it is standard to define the error as the difference between the
desired value ys and the current value y. If the error is large, then the control
action is large. Mathematically:

u(t) = Kce(t) + u0 (2.23)

where u(t) represents the controller output, e(t) = ys(t)− y(t) represents the
error, Kc represents the controller gain and u0 represents the steady state
control action (bias). It is important that the control action u(t) counteracts
the change in the controlled variable y(t) (negative feedback).

Proportional-Integral-Derivative: it is also called PID controller. It is a generic
control loop feedback mechanism widely used in industrial control systems. A
PID controller calculates an “error” value as the difference between a measured
process variable and a desired setpoint. The controller attempts to minimize
the error by adjusting the process control inputs. The PID controller algorithm
involves three separate parameters, in fact it is sometimes called three-term
control: the proportional, the integral and derivative values, denoted P, I, and
D. The proportional value determines the reaction to the current error, the
integral value determines the reaction based on the sum of recent errors, and
the derivative value determines the reaction based on the rate at which the
error has been changing. The weighted sum of these three actions is used to
adjust the process. Heuristically, these values can be interpreted in terms of
time: P depends on the present error, I on the accumulation of past errors,
and D is a prediction of future errors, based on current rate of change. The
proportional, integral, and derivative terms are summed to calculate the output
of the PID controller. Defining u(t) as the controller output, the final form of
the PID algorithm is:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) (2.24)

where the control parameters are Kp, Ki and Kd:

• larger values of the proportional gain typically mean faster response since
the larger the error, the larger the proportional term compensation. An

34

2 – Definition and reference model

Figure 2.16 – A typical block diagram of a PID controller.

excessively large proportional gain will lead to process instability and
oscillation;

• larger values of the integral gain imply that steady state errors are elimi-
nated more quickly. The disadvantage is represented by a larger overshoot;

• larger values of the derivative gain decrease overshoot, but slow down tran-
sient response and may lead to instability due to signal noise amplification
in the differentiation of the error.

PID controllers often provide acceptable control even in the absence of tuning,
but performance can generally be improved by careful tuning and they may be
unacceptable with poor tuning.

Proportional-Derivative: it is also called PD controller. Only the proportional
and derivative feedback of the PID controller are active, that is the gain of
the integral feedback is set to zero. An example of PD controller is the one
implemented for the detumbling attitude control in Figure 4.7.

Linear-Quadratic-Gaussian: it is also called LQG controller. It is simply the
combination of a Kalman flter, i.e. a Linear-Quadratic Estimator (LQE), with
a Linear-Quadratic Regulator (LQR). The separation principle guarantees that
these can be designed and computed independently. LQG control applies to
both linear time-invariant systems as well as linear time-varying systems. The
application to linear time-varying systems enables the design of linear feedback
controllers for non-linear uncertain systems.
The LQG controller itself is a dynamic system like the system it controls. Both
systems have the same state dimension. Therefore implementing the LQG
controller may be problematic if the dimension of the system state is large.
The reduced-order LQG problem (fixed-order LQG problem) overcomes this
by fixing a-priori the number of states of the LQG controller. This problem

35

2 – Definition and reference model

is more difficult to solve because it is no longer separable. Also the solution
is no longer unique. Despite these facts numerical algorithms are available to
solve the associated optimal projection equations which constitute necessary
and sufficient conditions for a locally optimal reduced-order LQG controller.
LQG optimality does not automatically ensure good robustness properties. The
robust stability of the closed loop system must be checked separately after the
LQG controller has been designed. To promote robustness some of the system
parameters may be assumed stochastic instead of deterministic. Consider the
linear dynamic system:

˙̄x(t) = A(t)x̄(t) + B(t)ū(t) + v̄(t) (2.25)
ȳ(t) = C(t)x̄(t) + w̄(t) (2.26)

where x̄ represents the vector of state variables of the system, ū the vector
of control inputs and ȳ the vector of measured outputs available for feedback.
Both added noise, that is w̄(t) affect the system. Given this system, the aim is
to find control input history ū(t) which at every time t may depend only on
the past measurements such that the following cost function is minimized (E
denotes the expected value):

J = E
(
x̄′(T)F x̄(T) +

∫ T

0

(
x̄′(T)Qx̄(T) + ū′(T)Rū(T)dt

))
(2.27)

The LQG controller that solves the LQG control problem is specified by the
following equations:

˙̂x(t) = A(t)x̂(t) + B(t)ū(t) + K(t)(ȳ(t)−C(t)x̂(tv)) (2.28)
ū(t) = −L(t)x̂(t) (2.29)

The matrix K(t) is called Kalman gain of the associated Kalman filter repre-
sented by the first equation. At each time t this filter generates estimates x̂(t)
of the state x̄(t) using the past measurements and inputs. The Kalman gain
K(t) is computed from the matrices A(t), C(t), the two intensity matrices
V (t), W (t) associated to the white Gaussian noises v̄(t) and w̄(t) and finally
P (0) = E(x̄(0)x̄′(0)). These five matrices determine the Kalman gain through
the following Riccati differential equation:

Ṗ (t) = A(t)P (t) + P (t)A′(t)− P (t)C ′(t)W−1(t)C(t)P (t) + V (t) (2.30)

Given the solution P (t) the Kalman gain is equal to:

K(t) = P (t)C ′(t)W−1(t) (2.31)

36

2 – Definition and reference model

The matrix L(t) is called feedback gain matrix. This matrix is determined by
the matrices A(t),B(t), Q(t), R(t) and F through the following associated
matrix Riccati differential equation:

Ṡ(t) = A′(t)S(t) + S(t)A(t)− S(t)B(t)R−1(t)B′(t)S(t) + Q(t) (2.32)

Given the solution S(t) the feedback gain is equal to:

L(t) = R−1(t)B′(t)S(t) (2.33)

It’s important to observe the similarity of the two matrix Riccati differential
equations, the first one running forward in time, the second one running
backward in time: this similarity is called duality. The first matrix Riccati
differential equation solves the LQE problem while the second solves the LQR
problem. These problems are dual and together they solve the LQG control
problem.

37

Chapter 3

System design

In order to guarantee the satellite is able to control adequately its attitude, it is
necessary to develop a model quite accurate, that is a system capable of representing
the real physic that the satellite will face when it is in orbit. The project has been
divided into several phases:

1. requirements definition;

2. functional analysis;

3. development and implementation of a basic mathematical model;

4. trade-off between different possible configurations;

5. improvements to the mathematical model.

3STAR is a 3U cubesat, a category not very common; in fact, while in orbit there is
a considerable number of units of the classical type (1U), including e-st@r (previous
project of Politecnico di Torino) from 13th February 2012, the number of 3U type
in orbit is smaller than ten. Among these, three have been designed by NASA
(therefore for obvious differences in the available budget, they can not be a source of
information to design the attitude determination and control system) and most of
the remaining have a passive ADCS. Consequently, an active ADCS for this category
represents an important innovation and challenge, just because the background is
not as wide as the 1U category.

3.1 Requirements
The attitude determination and control subsystem measures and controls the space-
craft’s angular orientation, that is pointing direction. Seeing at mission statement

38

3 – System design

and objectives, it is evident that the system must be able to ensure appropriate
pointing and adequate reorientation when required, so it is necessary an active control
system, because the pointing accuracy provided by passive systems is not suitable for
this type of mission. Obviously the ADCS requirements are closely tied to mission
needs and characteristics of other subsystems, as it is possible to see in Table 3.1.

Table 3.1 – 3STAR requirements.

Code Requirement description
Mission requirements

3S.MR-230 3STAR complexity shall be minimized
3S.MR-240 3STAR cost shall be minimized
3S.MR-360 3STAR mission shall be performed in a LEO

Space segment requirements

Space segment general requirements
SSR.GR-010 The system shall be placed on a LEO orbit
SSR.GR-020 The system shall remain in a LEO orbit between 500 and

750 km during all the mission exploitation time
SSR.GR-100 3STAR shall be equipped with an attitude determination

and control system
SSR.GR-101 The attitude control system shall be partially or completely

active to fulfill the antenna pointing requirements
Mechanical requirements

SSR.MCR-040 3STAR mass shall not exceed 4 kg
SSR.MCR-130 The ADCS mass shall not exceed TBD g

Thermal requirements
SSR.TR-030 3STAR temperature shall be mantained in TBD range

during all mission phases
Functional requirements

P-GRESSION payload
PG-FR-020 3STAR system shall provide the right Zenit antenna point-

ing
PG-FR-030 3STAR system shall provide the right Nadir antenna point-

ing
Table 3.1: continues on next page

39

3 – System design

Table 3.1: continues from the previous page

Code Requirement description
PG-FR-040 3STAR system shall provide the right Limb antenna point-

ing
PG-FR-050 3STAR system shall provide an active ADCS to allow the

antennas pointing
Bus

B.FR-405 The spacecraft shall be able to determine its attitude (at
least its roll)

B.FR-410 The ADCS shall determine the attitude via IMU and mag-
netometer

B.FR-411 The IMU shall provide angular velocity measurement
B.FR-412 The IMU shall provide acceleration measurement
B.FR-413 The magnetometer measurement accuracy shall be at last

TBD mT
B.FR-414 The IMU velocity mesurement accuracy shall be at last

TBD rad/s
B.FR-415 The IMU acceleration measurement accuracy shall be at

last TBD m/s2

B.FR-420 The ADCS shall eventually determine the attitude via sun
sensor

B.FR-430 The ADCS shall control the attitude via magnetic coils or
micro reaction wheels

B.FR-440 The ADCS pointing accuracy shall be lower than TBD◦
B.FR-450 The moment generated shall be higher than TBD Nm
B.FR-451 Maximum actuated angular velocity shall be at last TBD

rad/s
B.FR-460 The ADCS shall have a dedicated microprocessor for data

elaboration
B.FR-470 The ADCS microprocessor shall communicate with the

OBC via a TBD port
B.FR-480 The ADCS microprocessor shall communicate with the

OBC with TBD protocol
B.FR-490 Actuators shall be controlled via PWM
B.FR-500 The ADCS shall choose the best measurement set provided

by sensors
B.FR-510 The magnetometer shall not be jammed by the magnetic

field generated inside the spacecraft
Table 3.1: continues on next page

40

3 – System design

Table 3.1: continues from the previous page

Code Requirement description
B.FR-520 ADCS shall be able to detumbling the satellite after the

deployment
B.FR-530 The ADCS actuators maximum consumption shall be TBD

W
Operational requirements

SSR.OR-020 The cubesat shall be able to receive a command to change
his attitude

SSR.OR-100 The cubesat shall be able to receive a command to re-
boot/shut down the ADCS

Interface requirements

Physical interfaces
SSR.PINT-060 EPS-PCDU, ADCS, and COMSYS shall be attached to the

3STAR bus, on the OBC board
SSR.PINT-070 The OBC, COMSYS, ADCS, and EPS-PCDU shall be

attached to the main structure
Functional interfaces

SSR.FINT-020 EPS-PCDU, ADCS, OBC, and COMSYS shall communi-
cate via the 3STAR bus, using a defined communication
protocol

SSR.FINT-070 The ADCS shall provide the OBC with IMU, Magnetometer
and if present the Sun Sensor telemetry, and MT command
information and housekeeping data

Table 3.1: ends from the previous page

3.2 Functional analysis
The attitude determination and control subsystem (ADCS) stabilizes the vehicle and
orients it in desired directions during the mission despite the external disturbance
torques acting on it. This requires that the vehicle is able to determine its attitude,
using sensors (like magnetometer, inertial measurement unit and sun sensor), and
to control it using actuators (for 3STAR , requirements impose to adopt magnetic
torquers or/and reaction wheels). After a careful evaluation of all the requirements,
it has been possible to define functions that ADCS subsystem must be able to
guarantee. The most important are (Figure 3.1 to see all functions, Figure 3.2 to see

41

3 – System design

functions-devices matrix and Figure 3.3 to see a preliminary scheme of ADCS):

• to determine attitude;

• to control attitude (counteracting disturbance torques);

• to guarantee correct pointing;

• to communicate health-status to OBC;

Figure 3.1 – ADCS functional tree.

Figure 3.2 – Functions-devices matrix.

42

3 – System design

Figure 3.3 – Preliminary scheme of ADCS.

3.3 Mathematical model
This section presents satellite’s preliminary mathematical model, used to simulate
3STAR satellite in its environment so to be able to choose the most powerful
configuration among those assumed.

3.3.1 Dynamics
Some assumptions are considered to obtain the dynamic model of the satellite. For
example, it can be considered as an ideal rigid body, so the dynamic model is derived
using a Newton-Euler formulation, where the angular momentum changes related to
applied torques. In the generic case of three-axial spinning satellite, it is possible to
write:

˙̄hB + ω̄BIB × h̄B = T̄B (3.1)

where h̄B is the momentum vector expressed in the Body frame, ω̄BIB the angular
velocity of the Body frame relative to the ECI frame expressed in the Body frame
and T̄B the sum of all torques acting on the satellite. If there are no internal moving
parts the previous equation can be rewritten, considering I inertia matrix, as:

I ˙̄ωBIB + ω̄BIB × Iω̄BIB = T̄B (3.2)

43

3 – System design

that gives the equation for the angular acceleration:

˙̄ωBIB = I−1(T̄B − ω̄BIB × Iω̄BIB) (3.3)

Integrating the acceleration over time it is possible to calculate the angular velocity
of the satellite. Moreover, the angular velocity ω̄BIB can be written as the sum of two
angular velocities, as

ω̄BIB = ω̄BIO + ω̄BOB = RB
Oω̄

O
IO + ω̄BOB (3.4)

where RB
O is rotation matrix from orbit frame to body frame (Equation 2.19) and

and ω̄OIO =
[
0 ωo 0

]
is the known angular velocity of the Orbit frame relative to

the ECI frame, expressed in Orbit frame. This velocity depends only on the altitude
of the orbit, and can be calculated as

ωo =
√
GMe

R3 (3.5)

where G is the gravitational constant, Me is the mass of the Earth and R is the
distance from the center of the Earth to the satellite. The implementation in Matlab
Simulink is represented in the Figure 3.4.

Figure 3.4 – Simulink model for the computation of the dynamics of 3STAR .

3.3.2 Kinematics
Kinematics of the satellite describes the orientation of the satellite and its calculation
is simply obtained through integration over time of the angular velocity. Using

44

3 – System design

quaternions to describe the attitude, it is possible to write:

q̄ =
∫

˙̄qdt (3.6)

˙̄q =
[

−1
2~q · ω̄

B
OB

1
2q0ω̄

B
OB + 1

2~q × ω̄
B
OB

]
(3.7)

where ~q is the the vectorial part of the quaternion (Equation 2.15) and ω̄BOB is the
angular velocity of the Body frame relative to the Orbit frame expressed in the
Body frame (it can be obtained from Equation 3.4). The implementation in Matlab
Simulink is represented in the Figure 3.5.

Figure 3.5 – Simulink model for the computation of the kinematics of 3STAR .

3.3.3 Torques acting on 3STAR
The attitude of a satellite is influenced by control torques and a number of different
disturbances. The first depend on the attitude control system that, if properly
developed, should be capable to place the satellite in the desired attitude. The
second however, as the name implies, are disturbances caused by internal or external
sources that interact with the satellite to change its attitude, in fact in both cases they
act on the satellite as torques. The dominant external disturbances are caused by
the magnetic and gravitational field, the aerodynamic drag in the upper atmosphere,
solar radiation pressure and pressure from impacts of micrometeorites. For our
mission, the aerodynamic drag can be considered negligible and the last mentioned
before can however be considered highly unlikely in low orbits around the Earth [13].

45

3 – System design

3.3.3.1 Disturbance from the Earth’s gravitational field

A non-symmetrical satellite orbiting the Earth is subjected to a gravitational torque
due to the Earth’s non-uniform gravitational field. Assuming that the satellite is
only influenced by the Earth’s gravitational field, the satellite consists of a single
body and that both the Earth and the satellite are assumed to be two point masses,
it is possible to calculate the gravitational force exerted by the Earth on the satellite,
using Newton’s law of gravitation. In general, it is possible to define the intensity of
a gravitational field generated by presence of a mass as

ḡ = −GM
r2 r̂ (3.8)

where G is the gravitational constant, M is the mass and r is the distance from
the center of mass. Any object immersed in the gravitational field undergoes an
acceleration, so a force greater in its parts closer to the body that generates the field,
compared to more distant parts. This difference of forces applied to various parts of
a satellite generates a torque that tries to align the major axis of the same with the
local vertical. This torque is calculated as:

T̄g = −3ω2
o r̂ × I · r̂ (3.9)

3.3.3.2 Disturbance from atmospheric drag

The aerodynamic drag disturbance originates from atmospheric molecules colliding
with the surface of the satellite: it is the cause of the variation of the attitude and
the reducing of the height of the orbit. If there is a difference between the center of
mass and the center of pressure of the satellite (indicated with r̄cp), there will be a
resulting torque given by:

T̄a = r̄cp × F̄a (3.10)
where the aerodynamic force vector F̄a is

F̄a = 1
2ρV

2CDS
V̄

V
(3.11)

3.3.3.3 Disturbance from the satellite’s magnetic residual

During its orbit, the satellite is situated in the Earth’s magnetosphere that protects
it from cosmic radiation. However it has to be considered that the satellite has a
residual magnetic field primarily originates from currents in the on-board electronics
and hysteresis effects in ferromagnetic materials. The interaction of this residual
magnetic dipole moment of the satellite (mr) and the Earth’s magnetic field (B)
generates a magnetic disturbance torque that can be quantified as:

T̄Bmr = m̄B
r × B̄B (3.12)

46

3 – System design

3.3.3.4 Control with magnetic torquers

This type of control is based on the same principle that generates the disturbance
magnetic torques with the substantial difference that in this case the dipole moment
is created intentionally to modify the attitude. The desired torque is obtained as

T̄Bm = m̄B × B̄B (3.13)

It is possible to calculate the dipole moment m̄ as

m̄ = NIAn̂A (3.14)

where N is the number of coils, I the current flowing in them, A the area inscribed
by the coils and n̂A the unit vector perpendicular to the plane of the coils. The
model implemented is shown in Figure 3.6.

Figure 3.6 – Simulink model of magnetic torquers.

3.3.3.5 Control with reaction wheels

Reaction wheels are a common choice for active spacecraft attitude control. In this
mode of control, an electric motor attached to the spacecraft spins a small, freely
rotating wheel, the rotational axis of which is aligned with a vehicle control axis.
Obviously the electric motor drives the wheel in response to a correction command
computed as part of the spacecraft’s feedback control loop. They are capable of
generating internal torques only; with such a system, the wheel rotates one way and
the spacecraft the opposite way in response to torques imposed externally on the
spacecraft. From application of Euler’s momentum equation, the integral of the
net torque applied over a period of time will produce a particular value of total
angular momentum stored onboard the spacecraft, resident in the rotating wheel or
wheels, depending on how many axes are controlled. When it is spinning as fast as it
can with the given motor drive, the wheel becomes “saturated” and cannot further
compensate external torques [6].

The reaction wheel configuration in X, Y and Z axes is generally descripted by
the following equation:

T̄Brw = ˙̄hBrw + ω̄BIB × h̄Brw − T̄Bfriction (3.15)

47

3 – System design

where T̄Brw is the torque caused by reaction wheel, h̄Brw is the total moment vector
of reaction wheel, and T̄Bfriction is the frictional torque caused by wheels and usually
assumed to be zero.

The model [7] implemented is shown in Figure 3.7.

Figure 3.7 – Simulink model of reaction wheel.

3.4 Trade-off of possible configurations
During the early stages, i.e. the analysis of mission requirements and functional
analysis, it was decided to adopt two possible types of controllers, magnetic torquers
and reaction wheels. Obviously they can be positioned in different ways along
the axes of reference and in different numbers, therefore it is necessary to do
a trade-off between different configurations, also using the mathematical model
developed previously (running multiple simulations for configurations assumed). The
configurations investigated are:

• a magnetorquer for each axis;

• a magnetorquer for each axis and a reaction wheel on X axis;

• a magnetorquer for each axis and a reaction wheel on Y axis;

• a magnetorquer for each axis and a reaction wheel on Z axis;

• a magnetorquer for each axis and two reaction wheels, on X and Y axes;

• a magnetorquer for each axis and two reaction wheels, on X and Z axes;

• a magnetorquer for each axis and two reaction wheels, on Y and Z axes;

48

3 – System design

• a magnetorquer on X axis and a reaction wheel for each axis;

• a magnetorquer on Y axis and a reaction wheel for each axis;

• a magnetorquer on Z axis and a reaction wheel for each axis;

The instrument adopted to decide which configuration to take is based on a
scoring system, in which marks are assigned to the various criteria and it is also given
the “weight” of a criterion with respect to others. Weighting factors are obtained
firts considering which of the criteria is more important than others. The table is
produced asking “X (parameter on row) is more or less important than Y (parameter
on column)?” and assigning 1 if X is more important than Y, 0 if they have the
same importance and -1 if X is less important. Finally, the Equation 3.16 shows
how the weighting factor is obtained (Ni is the sum of the elements on the row, N is
the sum of the absolute values of Ni and J is the number of criteria):

Wf−i = Ni +N∑
Ni +NJ

(3.16)

Marks are assigned from 0 (worst rating) to 10 (best score) based on personal
knowledge, previous practical experience and information gathered on specialized
texts.

Criteria evaluated are:

• mass;

• reliability;

• size;

• power consumption;

• cost;

• accuracy;

• stabilizing time.

Because of the limited budget, the cost has been considered in general the most
important parameter, followed closely by reliability, power consumption and accuracy.
The stabilization time is regarded as the less important since, in order to remain in
those that are the limits of cost, mass and electric power, it is also disposed to have
longer stabilization times than those that would occur, for example with components
more powerful.

49

3 – System design

Thanks to this decision tool (the results thus obtained are shown in the Figure 3.8),
it has been decided therefore to adopt the configuration with a magnetic torquer
for each axis and a reaction wheel only on Z axis which reaches a score of 5.473, far
superior to all other configurations (for example, the configuration with the second
score is by far superior in terms of mass and cost but fails to stabilize the satellite).

50

3 – System design

F
ig
ur
e
3.
8
–
Tr

ad
e-
off

de
ci
sio

n
to
ol
.

51

Chapter 4

Development of the model,
simulations and results

The model examined until now can be considered a good model but since then there
is the need to test it with the Hardware In the Loop simulation technique, it is
necessary to replace some physical parts of the satellite with the simulated ones
increasing the complexity of the model but thus improving the results of simulations.
In this chapter the model described in the previous chapter will be improved with
the aim to better simulate the real physical system behavior without using it. In
order to do this, the model is firstly linearized (because Kalman filter and LQR
controller work on linear model), then modified adding simply white noise blocks
and more accurate models of the physical parts.

4.1 Linearization of the mathematical model

The mathematical model of the system has to be linearized because linear controller
techniques has been selected for the attitude control system. The linearization point
is selected as given in following equation:

q̄ =
[
q0
~q

]
=


q0
q1
q2
q3

 =


1
0
0
0

 (4.1)

52

4 – Development of the model, simulations and results

4.1.1 Kinematics
In Equation 3.7, the kinematic model of the satellite is given, so ,applying the
conditions of linearization points (Equation 4.1), it becomes:

˙̄q = 1
2


−(q1 + q2 + q3)

q0

1
1

1

+

 0 −q3 q2
q3 0 −q1
−q2 q1 0


 ω̄BOB ≈

[
0

1
2 ω̄

B
OB

]
(4.2)

It is easy to see from Equation 4.2 that ω̄BOB = 2~̇q

4.1.2 Rotation matrix
If the rotation matrix between body and orbit frame given in Equation 2.19 is
linearized around point given in Equation 4.1, it becomes:

RB
O ≈ 2


1
2 q3 −q2
−q3

1
2 q1

q2 −q1
1
2

 (4.3)

4.1.3 Angular velocity
By applying Equation 4.3 and Equation 4.2 into Equation 3.4, linearized model of
ω̄BIB is derived as:

ω̄BIB =

ωxωy
ωz

 ≈
2q̇1 + 2q3ωo

2q̇2 + ωo
2q̇3 − 2q1ωo

 (4.4)

The time derivative of ω̄BIB is hence obtained as:

˙̄ωBIB =

ω̇xω̇y
ω̇z

 ≈
2q̈1 + 2q̇3ωo

2q̈2
2q̈3 − 2q̇1ωo

 (4.5)

The Equations 4.4 and 4.5 will be used to derive the linearized dynamics equation.

4.1.4 Gravitational torque
The gravitational torque is written in Equation 3.9, using Equation 2.20 it can be
linearized as:

T̄Bg = 3ωoĉB3 × (IĉB3) ≈ 3ωo

2(Iz + Irw − Iy)q1
2(Ix − Iz − Irw)q2

0

 (4.6)

53

4 – Development of the model, simulations and results

4.1.5 Magnetic torquer
The torque produced by a magnetic torquer is given in Equation 3.13 but it can also
be expressed as shown below by using skew-symmetric matrix formulation:

T̄Bm = m̄B × B̄B = S(m̄B)B̄B = S(m̄B)RB
OB̄

O ≈ S(m̄B)B̄O =

B
O
z my −BO

y mz

BO
xmz −BO

z mx

BO
y mx −BO

xmy


(4.7)

4.1.6 Reaction wheel
Reaction wheels dynamic equation is linearized around the point where ω̄BIB is almost
equal to 0, so considering that 3STAR has only a reaction wheel on Z axis the
Equation 3.15 becomes:

T̄Brw = ˙̄hBrw + ω̄BIB × h̄Brw − T̄Bfriction =

Trw−xTrw−y
Trw−z

 =

=

 0
0

ḣrw−z + hrw−yωx − hrw−xωy

 ≈
 0

0
ḣrw−z


(4.8)

4.1.7 Complete model
Starting from the Equation 3.2 and replacing all the linearized equations, it is possible
to obtain the complete linearized model; the system can be expressed by state-space
representation in linear form given by following equation:

˙̄x(t) = Ax̄(t) + B(t)ū(t) (4.9)

where x̄ is the state vector (defined as x̄ =
[
q1 q2 q3 q̇1 q̇2 q̇3

]T
), ū the input

vector (defined as ū =
[
mx my mz Trw

]T
), then A and B matrices can be written

as in following equations:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−4σxω2
o 0 0 0 0 (1− σx)ωo

0 −3σyω2
o 0 0 0 0

0 0 −σzω2
o −(1− σz)ωo 0 0


(4.10)

54

4 – Development of the model, simulations and results

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 BO

z

2Ix
−BO

y

2Ix
0

−BO
z

2Iy
0 BO

x

2Iy
0

BO
y

2(Iz+Irw) −
BO

x

2(Iz+Irw) 0 1
2(Iz+Irw)


(4.11)

where:
σx = Iy − (Iz + Irw)

Ix
σy = Iz + Irw − Ix

Iy
σz = Ix − Iy

Iz + Irw
(4.12)

4.2 Magnetometer
Magnetometers are simple, reliable, lightweight sensors that measure both the
direction and size of the Earth’s magnetic field in the proximity of the instrument.
When compared to the Earth’s known field, their output helps us establish the
spacecraft’s attitude. But their accuracy is not very high when compared to other
types of sensors, in fact it is of the order of 0.5-3 deg [6].

The first improvement of the system introduced is the magnetometer, which has
been implemented firstly using white noise and then using a specific model (Figure 4.1).
The magnetometer gives the values of the components of the magnetic field in Body
oordinates and its readings are affected of a noise of about 0.5 mGauss, as reported
in the Magnetometer datasheet. Said H̄ the real magnetic field vector, the measured

Figure 4.1 – Magnetometer implemented.

one, called B̄, can be obtained with a model [15] based on the equation:

B̄ = KTCH̄ + b̄+ v̄ (4.13)

where K is the scale factor matrix, T the magnet sensor sensitivity rotation matrix,
C the assembly error matrix, b̄ the biases vector and v̄ the noises vector.

55

4 – Development of the model, simulations and results

The scale factor matrix is a diagonal matrix containing the gain values, in this
case it is:

K =

9715 0 0
0 8584 0
0 0 7392

 (4.14)

The magnet sensor sensitivity rotation matrix represent the misalignment of the
sensor due to the manufacturing phases and it is:

T =

 1.000 −0.007 −0.006
−0.060 0.998 −0.009
−0.051 0.010 0.999

 (4.15)

Like to the previous one, the assembly error matrix includes the misalignment of
the sensor, but in this case the cause is the assembly of the sensor on the satellite.
This matrix can be written in the general case as:

C =

 c(α)c(γ)− c(β)s(α)s(γ) c(γ)s(α) + c(α)c(β)s(γ) s(β)s(γ)
−c(β)c(γ)s(α)− c(α)s(γ) c(α)c(β)c(γ)− s(α)s(γ) c(γ)s(β)

s(α)s(β) −c(α)s(β) c(β)

 (4.16)

with c and s compact notations for cos and sin.
The biases vector contains the values that the sensor considers as zero, in this

case it is equal to:

b̄ =

32400
32568
32698

 (4.17)

The noises vector contains noises affecting sensor during measurements and it
can be written as:

v̄ = 2

0.5− rand
0.5− rand
0.5− rand


∥∥∥H̄∥∥∥
100 (4.18)

where it is generated a three element vector each of which has zero mean and is
between −‖H̄‖100 and ‖H̄‖100 , that is a noise of 1% of the signal intensity.

Summing all the disturbances, the measured magnetic vector is obtained; in fact
the sensor has a built-in software that eliminates known misalignments and filter the
output so that the effective output has a greater accuracy then the measured one
(see Figure 4.2) and also because there is no need to use additional filters. This can
be represented, in a simplified form, with the equation:

B̄out = (KTC)−1(B̄ − b̄) (4.19)

In Figure 4.2 it is shown the evolution of the magnetic field calculated and measured
with the two different magnetometers implemented: the difference between calculated
and measured with real magnetometer is very small, that is about o(10−11)

56

4 – Development of the model, simulations and results

Figure 4.2 – Results of different magnetometers.

4.3 IMU
IMU stands for Inertial Measurement Unit, that is a system for the direct measurement
of accelerations and angular velocities, with respect to three coordinate axes by means
of accelerometers and gyroscopes, and for the calculation of velocity and position
through the integration of the quantities measured by a processor. Gyroscopes
are inertial sensors which measure the speed or angle of rotation from an initial
reference, but without any knowledge of an external, absolute reference. They are
used on spacecraft for precision attitude sensing, in fact their accuracy is very high,
about 0.01 deg/hr. Manufacturers use a variety of physical phenomena, from simple
spinning wheels (iron gyros using ball or gas bearings) to ring lasers, hemispherical
resonating surfaces and laser fibre optic bundles [6].

As seen previously for the magnetometer, also for the IMU has been made a first
version adding Gaussian noise (in this case the noise is of 0.05 deg/sec [17]) and then
a suitable model has been implemented [16]; this model represent the gyroscopes of
an IMU considering these disturbances:

gravity gradient: its effect is due to different forces on the sensor than the cali-
bration ones and it can be considered using this formulation:

f̄g = f̄ + Tḡ −T0ḡ0 (4.20)

where f̄ are the forces applied on the IMU, T the rotation matrix from the

57

4 – Development of the model, simulations and results

IMU to the external reference frame, ḡ the local gravitational force, T0 the
calibration rotation matrix and ḡ0 the calibration gravitational forces;

misalignment: this effect is due to misalignment between the sensor and the IMU
reference frame, causing that the specific force components are not aligned to
each input axis. It can be expressed as:

f̄m = Tmf̄ (4.21)

where Tm is the gyroscopes misalignment matrix. It can be written as:

Tm =

c(βxy)c(βxz) −c(βyx)s(βyz) c(βzx)s(βzy)
c(βxy)s(βxz) c(βyx)c(βyz) −s(βzx)
−s(βxy) s(βyx) c(βzx)c(βzy)

 (4.22)

with c and s compact notations for cos and sin, moreover β(··) are the six
components of the misalignment vector that can be obtained using this equation:

β̄ = β̄n + δdβ̄n + δrβ̄n (4.23)

where β̄n is the base misalignments vector, δd the day-to-day stability parameter
and δr the in-run stability parameter and they can be obtained as:

δ(·)β̄n = σ(·)β̄nrand (4.24)

with rand a random number between 0 and 1 and σ(·) are standard deviations
(function of the nominal values β and given parameters for stability day-to-day
βd and in-run βr);

cross coupling: this effect is that the value measured on an axis is influenced by
the values of the others and it can be represented using the following matrix:

Kxc =

 0 xcxy xcxz
xcyx 0 xcyz
xczx xczy 0

 (4.25)

where xc(··) are the cross coupling coefficients that are obtained, similarly as in
Equation 4.23, as:

x̄c = x̄cn + δdx̄cn + δrx̄cn (4.26)

where x̄cn is the nominal cross coupling vector and the day-to-day stability
parameter (δd) and the in-run stability parameter (δr) can be obtained as in
Equation 4.24:

δ(·)x̄cn = σ(·)x̄cnrand (4.27)

58

4 – Development of the model, simulations and results

g-sensitivity: it is due to the linear influence of the actuating force on the input of
the gyros and it can be accounted for implementing the rotation given by the
matrix:

Kgs = gsn + gsd + gsr (4.28)
where:

gsn =

gsxx gsxy gsxz
gsyx gsyy gsyz
gszx gszy gszz

 (4.29)

gsd = δdgsnrand (4.30)

gsr = δrgsnrand (4.31)

g2-sensitivity: this effect is due to the square influence of the actuating force on
the input of the gyros and it can be implemented computing the rotation
matrices:

Kxg2s =

g2sxxx g2sxxy g2sxxz
0 g2sxyy g2sxyz
0 0 g2sxzz

 (4.32)

Kyg2s =

g2syxx g2syxy g2syxz
0 g2syyy g2syyz
0 0 g2syzz

 (4.33)

Kzg2s =

g2szxx g2szxy g2szxz
0 g2szyy g2szyz
0 0 g2szzz

 (4.34)

where:
g2s(·)(··) = g2s(·)(··)n + g2s(·)(··)d + g2s(·)(··)r (4.35)

in which g2s(·)(··)d and g2s(·)(··)r are the day-to-day and in-run stability param-
eters and they are calculated as:

g2s(·)(··)d = δdg2s(·)(··)nrand (4.36)

g2s(·)(··)r = δrg2s(·)(··)nrand (4.37)
So, the measured angular velocity can be written as:

ω̄out = Tmω̄ + KxcTmω̄ + KgsTmf̄g +

(Tmf̄g)TKxg2s(Tmf̄g)
(Tmf̄g)TKyg2s(Tmf̄g)
(Tmf̄g)TKzg2s(Tmf̄g)

 (4.38)

59

4 – Development of the model, simulations and results

The results obtained using parameters of IMU that probably will be used for
3STAR are shown in the Figure 4.3 and Figure 4.4: it is very interesting as the error
is highest in the first phase (that is detumbling phase), where it reaches a peak of
−0.02rad/s while, going towards stabilization, the error decreases so much until it
becomes a static error.

Figure 4.3 – Angular velocity measurements obtained with different models of IMU.

4.4 Kalman filter
The Kalman filter, also known as linear quadratic estimator (LQE), is an algorithm
which uses a series of measurements observed over time, containing noise (random
variations) and other inaccuracies, and produces estimates of unknown variables that
tend to be more precise than those that would be based on a single measurement
alone. More formally, the Kalman filter operates recursively on streams of noisy
input data to produce a statistically optimal estimate of the underlying system
state: thanks to its properties, it is an optimal filter for Gaussian errors with zero
mean acting on the system, in fact the main assumption of the Kalman filter is that
the underlying system is a linear dynamical system and that all error terms and
measurements have a Gaussian distribution.

The algorithm works in a two-step process (see Figure 4.5): in the prediction
step, the Kalman filter produces estimates of the current state variables, along with

60

4 – Development of the model, simulations and results

Figure 4.4 – Particular of angular velocity measurements.

their uncertainties. Once the outcome of the next measurement (obviously corrupted
with some amount of error, including random noise) is observed, these estimates are
updated using a weighted average, with more weight being given to estimates with
higher certainty (in fact the weights are calculated from the covariance, a measure
of the estimated uncertainty of the prediction of the system’s state). The result of
the weighted average is a new state estimate which is between the predicted and
measured state, and has a better estimated uncertainty than either alone. Because of
the algorithm’s recursive nature, it can run in real time using only the present input
measurements and the previously calculated state: the entire history of a system’s
state is not required.

Because the certainty of the measurements is often difficult to measure precisely,
it is common to discuss the filter’s behavior in terms of gain. The Kalman gain is a
function of the relative certainty of the measurements and current state estimate,
and it can be “tuned” to achieve particular performance. With a high gain, the filter
places more weight on the measurements, and thus follows them more closely. With
a low gain, the filter follows the model predictions more closely, smoothing out noise
but decreasing the responsiveness. At the extremes, a gain of one causes the filter to
ignore the state estimate entirely, while a gain of zero causes the measurements to
be ignored. When performing the actual calculations for the filter, the state estimate
and covariances are coded into matrices to handle the multiple dimensions involved
in a single set of calculations. This allows for representation of linear relationships

61

4 – Development of the model, simulations and results

between different state variables in any of the transition models or covariances.

Figure 4.5 – Schematic operation of a Kalman filter.

4.4.1 Generic dynamic system model
In order to use the Kalman filter to estimate the internal state of a process given only
a sequence of noisy observations, the process must be modeled in accordance with
the framework of the Kalman filter. This means specifying the following matrices
(for each time-step, k):

Fk: the state-transition model;

Hk: the observation model;

Qk: the covariance of the process noise;

Rk: the covariance of the observation noise;

Bk: the control-input model.

The Kalman filter model assumes the true state at time k is evolved from the state
at (k - 1) according to:

x̄k = Fkx̄k−1 + Bkūk + w̄k (4.39)

where x̄k is the state vector, ūk is the control vector and w̄k is the process noise vector,
which is assumed to be drawn from a zero mean multivariate normal distribution with
covariance Qk. At time k a measurement z̄k of the true state x̄k is made according
to:

z̄k = Hkx̄k + v̄k (4.40)

62

4 – Development of the model, simulations and results

where Hk is the observation model which maps the true state space into the observed
space and v̄k is the observation noise which is assumed to be zero mean Gaussian
white noise with covariance Rk. The initial state and the noise vectors at each step
are all assumed to be mutually independent.

4.4.2 Equations
The Kalman filter can be written as a single equation, however it is most often
conceptualized as two distinct phases, “predict” and “update”:
predict: the predict phase uses the state estimate from the previous timestep to

produce an estimate of the state at the current timestep. This predicted state
estimate is also known as the a priori state estimate because, although it is an
estimate of the state at the current timestep, it does not include observation
information from the current timestep;

update: in the update phase, the current a priori prediction is combined with
current observation information to refine the state estimate. This improved
estimate is termed the a posteriori state estimate.

Typically, the two phases alternate, with the prediction advancing the state until the
next scheduled observation, and the update incorporating the observation. However,
this is not necessary: if an observation is unavailable for some reason, the update
may be skipped and multiple prediction steps performed. Likewise, if multiple
independent observations are available at the same time, multiple update steps may
be performed.

The state of the filter is represented by two variables:
ˆ̄xk|k: the a posteriori state estimate at time k given observations up to and including

at time k;

Pk|k: the a posteriori error covariance matrix, that is a measure of the estimated
accuracy of the state estimate.

4.4.2.1 Predict

Predicted (a priori) state estimate:
ˆ̄xk|k−1 = Fk

ˆ̄xk−1|k−1 + Bkūk (4.41)

with ˆ̄xk−1|k−1 the a posteriori state estimation at time k-1 given the measurements
at time k-1. Predicted (a priori) estimate covariance:

Pk|k−1 = FkPk−1|k−1FT
k + Qk (4.42)

where Pk−1|k−1 is the a priori estimate covariance at time k-1.

63

4 – Development of the model, simulations and results

4.4.2.2 Update

Innovation or measurement residual:

˜̄yk = z̄k −Hk
ˆ̄xk|k−1 (4.43)

Innovation (or residual) covariance:

Sk = HkPk|k−1HT
k + Rk (4.44)

Optimal Kalman gain:
Kk = Pk|k−1HT

kS−1
k (4.45)

Updated (a posteriori) state estimate:

ˆ̄xk|k = ˆ̄xk|k−1 + Kk
˜̄yk (4.46)

Updated (a posteriori) estimate covariance:

Pk|k = (I−KkHk)Pk|k−1 (4.47)

4.4.3 Results
The Kalman filter has been used in the model using the kalman function of MATLAB®,
which requires special input for the operation [14]:

[KEST,L,P] = kalman(SYS,QN,RN,NN)

where KEST is a Kalman estimator, L is the Kalman gain, P the solution of correspond-
ing algebraic Riccati equation, SYS the state-space model (it has been used the model
described in Section 4.1.7) and QN, RN and NN, are the covariance matrices. Using
the parameters of 3STAR ADCS, the results obtained are displayed in Figure 4.6.

4.5 Controls
To obtain the stabilization of the satellite, it was decided to divide the control in two
different parts: the first is intended to reduce the angular velocity of the satellite
after the release by the launcher, also called detumbling while the second to bring
the satellite in the correct attitude, that is the stabilization. The transition from first
to second stage is managed by a suitable control logic based on the angular velocity
of the satellite.

64

4 – Development of the model, simulations and results

Figure 4.6 – Results of Kalman filter.

4.5.1 Detumbling
This stage, immediately after the release from the launcher, is characterized by a more
or less high angular velocity depending on the conditions of release: the objective
therefore is to reduce it relatively fast (and compatibly with the other subsystems of
the satellite, for example EPS, since it can not surely be a high demand of electrical
power). The controller used is PD (it uses a different proportional and derivative
gain for each axis) because of its high robustness and it is shown in Figure 4.7.

Figure 4.7 – Simulink model for the detumbling phase controller.

The controls are calculated from the local magnetic field expressed in body
coordinates, the angular velocity and the angular position written in quaternions;

65

4 – Development of the model, simulations and results

the equation of controller is:

m̄det = K̄p[B̄B × (~q − ~qref)] + K̄d[B̄B × (ω̄BIB − ω̄BIBref)] (4.48)

It has been decided to consider the angular position q̄ =
[
1 0 0 0

]T
as the target

position, so the Equation 4.48 becomes:

m̄det = K̄p[B̄B × ~q] + K̄d[B̄B × ω̄BIB] (4.49)

Considering an initial (that is when 3STAR will be released from launcher vehicle)
angular velocity of ωBIB =

[
0.25 0.25 0.25

]T
, the detumbling phase ends after just

over 3900 seconds, as shown in Figure 4.8, where on the second plot there is a
parameter displaying the passage from detumbling to stabilization phase. This
represents quite a good result because, under these conditions, the detumbling phase
would be completed in a short time.

Figure 4.8 – Passage from detumbling to stabilization phase.

4.5.2 Stabilization
For this phase it has been decided to use a type of control different from the previous,
in fact it has been used the Linear-Quadratic Regulator, which combined with
a Linear-Quadratic Estimator (that is Kalman filter) takes the name of Linear-
Quadratic-Gaussian control or Optimal control (see Section 2.5.2). The controller

66

4 – Development of the model, simulations and results

has been implemented in the model using the lqr function of MATLAB®, which
requires, as seen previously for kalman function, special input for the operation [14]:

[K,S,E] = lqr(SYS,Q,R,N)

where K is the optimal gain matrix, S the solution of the associated algebraic Riccati
equation, E the closed-loop eigenvalues, SYS the state-space model (also for this
function it has been used the model described in Section 4.1.7) and Q, R and N
(sometimes omitted), are the matrices present in the cost function (Equation 2.27).
As for Kalman filter, the determination of matrix elements has been relatively
complex and it required many simulations (more than one hundred) to achieve a fine
tuning and so reaching a satisfactory result.

4.5.3 Selector
The choice of which controller to use is made using the angular velocity of the satellite
as shown in Figure 4.9, in which the following equation is implemented:

selector = 1+((
∣∣∣ωBIB−x∣∣∣ < 0.001)and(

∣∣∣ωBIB−y∣∣∣ < 0.001)and(
∣∣∣ωBIB−z∣∣∣ < 0.001)) (4.50)

where < and and have to be considered as logical operators so that they give 1 if all
the three absolute values of the velocity vector are less than the threshold. In this
way, the value of selector will be 1 if at least one of the three velocities is greater than
0.001 and otherwise 2. The hysteresis block relay has been implemented in order not
to permit the back pass from the stabilization to the detumbling controller: this trick
is very useful during test because mainly in the early stages of development of the
system often it is received unwanted and not real behavior, but it is not necessary in
real application because it is illogic that the satellite once stabilized will return to
conditions similar to whose after the launcher separation.

Figure 4.9 – Simulink model for the selector.

67

4 – Development of the model, simulations and results

Combining two models of the controllers with selector, the complete control logic
is obtained, as shown in Figure 4.10. The magnetic torque is followed by a saturation
block in order to limit the control intensity into the maximum range available, so to
ensure the respect of the physical limits of the system.

Figure 4.10 – Simulink model for the complete control logic.

4.6 Complete model
By joining the models described so far with the model of the orbit and of the
magnetic field (Figure 4.11), the complete model of the system is obtained as shown
in Figure 4.12.

The results are shown in Figure 4.13, where it is possible to see how the attitude,
after detumbling phase, reaches desired values in a short time, as shown in Figure 4.14
relatively to quaternions and in Figure 4.15 for angular velocities (detumbling phase
is completed in about 3900s while stabilization is completed in about 8000s). In
Figure 4.17 there is the dipole moment required to magnetic torquers while in
Figure 4.18 there are the power consumptions of them: it is possible to note that
they are heavily used in the phase of detumbling and until stabilization is reached
while reaction wheel (Figure 4.16) is used only in detumbling.

68

4 – Development of the model, simulations and results

Figure 4.11 – Simulink model for the orbit and the magnetic field.

69

4 – Development of the model, simulations and results

F
ig
ur
e
4.
12

–
C
om

pl
et
e
Si
m
ul
in
k
m
od

el
fo
r
th
e
A
D
C
S
of

3S
TA

R
.

70

4 – Development of the model, simulations and results

Figure 4.13 – 3STAR attitude

Figure 4.14 – Quaternions.

71

4 – Development of the model, simulations and results

Figure 4.15 – Angular velocity.

Figure 4.16 – Reaction wheel torque.

72

4 – Development of the model, simulations and results

(a) Global view.

(b) Once stabilization is completed.

Figure 4.17 – Dipole moment required to magnetic torquers.

73

4 – Development of the model, simulations and results

(a) Power required by MT.

(b) Total power required by MT.

Figure 4.18 – Power consumptions of MT.

74

Chapter 5

Hardware test

Before being able to achieve what is the effective system that will be installed on
3STAR (see Figure 5.1 for the ADCS scheme and Figure 5.2 to see the logical process
followed by the system), it is necessary a phase of characterization of the individual
sensors and actuators that will be used and then, of course, an implementation in
on-board software, which must be able to handle all the various components in order
to ensure a good operation of the system.

In the following sections it will be presented the ADCS processor (ARM9), the
test done for the hardware (like IMU) and then relative software as implemented
on the satellite. Obviously to implement the control logic on the satellite there is
the necessity to write a code that is understandable by the processor installed on
board: being impossible of installing MATLAB®, it has been adopted C programming
language, properly compiled on UNIX platform for ARM platform using a cross-
compiler (ELDK, Embedded Linux Development Kit).

5.1 Brief description of ARM architecture and C
programming language

The ARM is a 32-bit reduced instruction set computer (RISC) instruction set
architecture (ISA) developed by ARM Holdings. It was named Advanced RISC
Machine and, before that, Acorn RISC Machine. The ARM architecture is the most
widely used 32-bit ISA in terms of numbers produced. They were originally conceived
as a processor for desktop personal computers by Acorn Computers, a market now
dominated by the x86 family used by IBM PC compatible computers. The relative
simplicity of ARM processors made them suitable for low power applications. This
has made them dominant in the mobile and embedded electronics market as relatively
low cost and small microprocessors and microcontrollers.

In 2005, about 98% of the more than one billion mobile phones sold each year use

75

5 – Hardware test

Figure 5.1 – ADCS scheme.

at least one ARM processor. As of 2009, ARM processors account for approximately
90% of all embedded 32-bit RISC processors. ARM processors are used extensively
in consumer electronics, including PDAs, mobile phones, digital media and music
players, hand-held game consoles, calculators and computer peripherals such as hard
drives and routers. ARM9 is an ARM architecture 32-bit RISC CPU family: with
this design generation, ARM moved from a von Neumann architecture (Princeton
architecture) to a Harvard architecture with separate instruction and data buses (and
caches), significantly increasing its potential speed. Most silicon chips integrating
these cores will package them as modified Harvard architecture chips, combining the
two address buses on the other side of separated CPU caches and tightly coupled
memories.

C is a general-purpose computer programming language developed in 1972 by
Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating
system. It is an imperative systems implementation language. It was designed
to be compiled using a relatively straightforward compiler, to provide low-level

76

5 – Hardware test

Figure 5.2 – Process followed by ADCS.

access to memory, to provide language constructs that map efficiently to machine
instructions, and to require minimal run-time support. C was therefore useful for
many applications that had formerly been coded in assembly language.

Despite its low-level capabilities, the language was designed to encourage cross-
platform programming. A standards-compliant and portably written C program can
be compiled for a very wide variety of computer platforms and operating systems
with little or no change to its source code. The language has become available on a
very wide range of platforms, from embedded microcontrollers to supercomputers. In
addition to system software, C has long been the dominant language in a variety of

77

5 – Hardware test

other applications characterized by strong emphasis on efficiency. Typical examples
are telecommunications, industrial process control and real-time software. Today, the
dominance of C in these contexts is partly decreased due to the advent of significant
competitors, first of all the C++, however, it is not an obsolete programming
language.

5.2 Inertial Measurement Unit
As written in Section 4.3, the task of the IMU is to measure accelerations and
angular velocities by means of accelerometers and gyroscopes, nevertheless for our
mathematical model (see Section 3.3) only angular velocities are needed, so only
gyroscopes of the platform has been investigated and tested.

Rate sensors determine the attitude by measuring the rate of rotation of the
spacecraft. They are located internal to the spacecraft and work at all points in an
orbit. Since they measure a change instead of absolute attitude, gyroscopes must be
used along with other attitude hardware to obtain full measurements. Rate gyros
are simplest and least expensive gyros; their accuracy is usually good and although
they provide only rotation rate information, their output could be fed into on-board
computers and integrated to give angular displacement from some reference time or
position.

The real IMU adopted for 3STAR is the Atomic IMU 6 Degrees of Freedom
(Figure 5.3) produced by SparkFun Electronics: it is a stripped-down IMU, designed
to give good performance at a low price; the unit can run as a hard-wired UART
interface (0-3.3V, 115200bps) and the processor is an Atmel ATMega328 running at
8MHz with 6 dedicated 10-bit ADC channels reading the sensors. The 6-DOF Atomic
uses a Freescale MMA7361L triple-axis accelerometer, which is configurable to 1.5
or 6g sensitivity. Riding along with the MMA7361L are three ST Microelectronics
LISY300AL single-axis, 300◦/s gyros [17]. Other features of this sensor are:

Dimensions: 1.85 x 1.45 x 0.975 inches (47 x 37 x 25 mm);

Input voltage: from 3.4V to 10V DC;

Current consumption: 24mA hardwired with UART;

5.2.1 Test bench
A special test bench has been created by me in collaboration with Davide Falsetti
(MSc student of Automotive Engineering) in the Aerospace System Laboratory to
properly test the behavior of the IMU; it consists of:

78

5 – Hardware test

Figure 5.3 – Atomic IMU 6 Degrees of Freedom.

• an electric motor EMG30 (used with and without gearbox);

• facilities supporting cables necessary to power the motor, the platform and of
course for serial connection to PC;

• a RS232 adapter with the task of converting the voltage at the desired levels;

• a rigid surface in plexiglass for the installation of the platform.

The final result is shown in Figure 5.4, where it is possible to see some details.
This type of instrument is capable of testing only one axis at a time, then there

were carried out various types of installation of IMU on the platform so as to align
the rotation axis of the engine with the X-axis, the Y-axis or the Z-axis. Of course,
before to analyze IMU behavior, it was necessary to characterize the engine in the
configuration both with the gearbox and without it. The result thus obtained is
shown in the diagram in the Figure 5.5, where is possible to observe a substantially
linear behavior for both configurations analyzed.

79

5 – Hardware test

(a) With gearbox. (b) Without gearbox. (c) IMU installed on platform.

(d) With gearbox (top view). (e) Without gearbox (top view).

(f) RS232 adapter.

Figure 5.4 – Some figures of test bench of the IMU.

80

5 – Hardware test

Figure 5.5 – Characterization curve of the engine.

5.2.2 Characterization
After testing the behavior of the engine, it has been possible to analyze IMU
performances. As mentioned previously, the IMU is connected to the computer
through a serial interface and a RS232 adapter (see Figure 5.4(f)), so firstly it is
useful to look at the string of data received by the PC.

This type of electrical board provides an output in ASCII or binary and it can
be configured from a menu reachable via a terminal like HyperTerminal on Windows
platform or Minicom on UNIX platform; the strings obtained are shown in Table 5.1
and Table 5.2 where:

A: is the header flag;

c: is a counter;

ax: is the accelerometer on X axis;

ay: is the accelerometer on Y axis;

az: is the accelerometer on Z axis;

gx: is the gyroscope on X axis;

gy: is the gyroscope on Y axis;

gz: is the gyroscope on Z axis;

Z: is the footer flag.

81

5 – Hardware test

Binary string
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
data A c1 c2 ax1 ax2 ay1 ay2 az1 az2 gx1 gx2 gy1 gy2 gz1 gz2 Z

Table 5.1 – Binary string output of IMU.

ASCII string
byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
data A - c1 c2 - ax1 ax2 - ay1 ay2 - az1 az2 - gx1 gx2

16 17 18 19 20 21 22 23
- gy1 gy2 - gz1 gz2 - Z

Table 5.2 – ASCII string output of IMU.

Furthermore, the measures provided (this particular IMU provides measurements
of angular velocities as voltages) require a proper conversion from digital to analog
measure of voltage using the following relationship:

Vd = Va · res
Vref

(5.1)

where Va is the analog voltage measure, Vd is the digital voltage measure (provided
by IMU), res is the resolution (res = 210 = 1024) and Vref = 3.3[V] is the reference
voltage.

After this, the next step was the verification of output of the electrical board in
conditions first of zero rate (although this information is provided on the datasheet,
obviously for manifacturing defects or other similar cases, the behavior of the specific
IMU may differ from that which is the nominal case, that is, an output of 1.65 V under
conditions of precisely zero rate) and then at some different speeds, roughly covering
the entire measurement range (according to the characteristics and potentialities of
the engine).

For the characterization it has been used a C code that, by exploiting a large
number of measurements made from IMU, calculates the average to obtain the
reference values (see Listing 5.1).

As mentioned previously, the tests has been conducted by covering a large part of
the measuring range of the platform (this explains the use of the motor with gearbox,
to test low angular velocities, and without a gearbox, for the high angular velocities)
and especially both with a positive rotation that with a negative.

The results thus obtained (Figure 5.6) show a good response at both low and
high angular speeds, denoting a completely linear behavior in the whole measuring
range.

82

5 – Hardware test

Figure 5.6 – Graph of angular speed as a function of digital measure (used in C
implementation to obtain angular speed measured from output of
IMU).

Listing 5.1 – C code used to calibrate IMU.
1 serial = serial_init ();

if (serial < 0)
3 { printf (" errore apertura seriale \n");

return 0;}
5 // Commands to activate IMU

write(serial ,’41’, 1);// sets the sample frequency to 50Hz
7 write(serial ,’35’, 1);// starts the unit running in binary

mode with all channels active
//

9 unsigned char buffer [150] = { "" };
while (1)

11 { read(serial , buffer , 150);
usleep (100000) ;

13 i = 0;
while (i < 150)

15 { if (buffer [i] == ’A’)
{ c = 1;

17 count1 = buffer [i + 1];
count2 = buffer [i + 2];

83

5 – Hardware test

19 accx1 = buffer [i + 3];
accx2 = buffer [i + 4];

21 accy1 = buffer [i + 5];
accy2 = buffer [i + 6];

23 accz1 = buffer [i + 7];
accz2 = buffer [i + 8];

25 pitch1 = buffer [i + 9];
pitch2 = buffer [i + 10];

27 roll1 = buffer [i + 11];
roll2 = buffer [i + 12];

29 yaw1 = buffer [i + 13];
yaw2 = buffer [i + 14];

31 count = (int) (count1 * 256 + count2);
accx = (int) (accx1 * 256 + accx2);

33 acc_x = accx *3.3/1024 -1.65;
accy = (int) (accy1 * 256 + accy2);

35 acc_y = accy *3.3/1024 -1.65;
accz = (int) (accz1 * 256 + accz2);

37 acc_z = accz *3.3/1024 -1.65;
gyrox = (int) (pitch1 * 256 + pitch2);

39 gyro_x = gyrox *3.3/1024 -1.65;
gyroy = (int) (roll1 * 256 + roll2);

41 gyro_y = gyroy *3.3/1024 -1.65;
gyroz = (int) (yaw1 * 256 + yaw2);

43 gyro_z = gyroz *3.3/1024 -1.65;
// mostra le misure in ADC

45 printf ("%c\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%c\n", buffer [i
], count ,

accx , accy , accz , gyrox , gyroy , gyroz , buffer [i +
15]);

47 i = 150;}
else

49 i = i + 1;
if (c == 1)

51 { if (k< countcalib)
{ // Giroscopi - valori ADC

53 cal_gyrox = cal_gyrox +gyrox;
cal_gyroy = cal_gyroy +gyroy;

55 cal_gyroz = cal_gyroz +gyroz ;}
else if (k == countcalib)

57 { // Giroscopi - valori ADC
cal_gyrox = (cal_gyrox +gyrox)/ countcalib ;

59 cal_gyroy = (cal_gyroy +gyroy)/ countcalib ;

84

5 – Hardware test

cal_gyroz = (cal_gyroz +gyroz)/ countcalib ;
61 printf ("I coefficienti di calibrazione sono stati

trovati :\n");
printf ("Asse X=%g\n",cal_gyrox);

63 printf ("Asse Y=%g\n",cal_gyroy);
printf ("Asse Z=%g\n",cal_gyroz);}

65 }
}

67 k = k+1;
}

5.2.3 C implementation
The next step was the creation of a program written in C language, in such a way as
to be implemented on board the satellite, which was able to take the measurements
of IMU, provided in voltage levels, convert them into angular velocities so to be
used for the control of the satellite. The script created (Listing 5.2) is similar to
the previous one, but it does not include the part of calibration but simply that
of conversion in radians per second (that is the unit required by the script that is
responsible for the control).

Listing 5.2 – C code used to obtain measures from IMU.
serial = serial_init ();

2 if (serial < 0)
{

4 printf (" errore apertura seriale \n");
return 0;

6 }
// Commands to activate IMU

8 write(serial ,’41’, 1);// sets the sample frequency to 50Hz
write(serial ,’35’, 1);// starts the unit running in binary

mode with all channels active
10 //

unsigned char buffer [150] = { "" };
12 while (1)

{
14 read(serial , buffer , 150);

usleep (100000) ;
16 i = 0;

while (i < 150)
18 {

if (buffer [i] == ’A’)

85

5 – Hardware test

20 {
c = 1;

22 count1 = buffer [i + 1];
count2 = buffer [i + 2];

24 accx1 = buffer [i + 3];
accx2 = buffer [i + 4];

26 accy1 = buffer [i + 5];
accy2 = buffer [i + 6];

28 accz1 = buffer [i + 7];
accz2 = buffer [i + 8];

30 pitch1 = buffer [i + 9];
pitch2 = buffer [i + 10];

32 roll1 = buffer [i + 11];
roll2 = buffer [i + 12];

34 yaw1 = buffer [i + 13];
yaw2 = buffer [i + 14];

36 count = (int) (count1 * 256 + count2);
accx = (int) (accx1 * 256 + accx2);

38 acc_x = accx *3.3/1024 -1.65;
accy = (int) (accy1 * 256 + accy2);

40 acc_y = accy *3.3/1024 -1.65;
accz = (int) (accz1 * 256 + accz2);

42 acc_z = accz *3.3/1024 -1.65;
gyrox = (int) (pitch1 * 256 + pitch2);

44 gyro_x = gyrox *3.3/1024 -1.65;
gyroy = (int) (roll1 * 256 + roll2);

46 gyro_y = gyroy *3.3/1024 -1.65;
gyroz = (int) (yaw1 * 256 + yaw2);

48 gyro_z = gyroz *3.3/1024 -1.65;
// mostra le misure in ADC

50 // printf ("%c\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%c\n", buffer
[i],

count , accx , accy , accz , gyrox , gyroy , gyroz , buffer [i
+ 15]);

52 // conversione da ADC a velocità angolari (deg/s)
sfruttando

//la linea di tendenza dalla caratterizzazione
54 omegaxDEG =0.9768* gyrox -496.70;

omegayDEG =0.9753* gyroy -524.10;
56 omegazDEG =0.9764* gyroz -485.26;

// conversione in radianti
58 omegax = omegaxDEG * PIGRECO /180;

omegay = omegayDEG * PIGRECO /180;

86

5 – Hardware test

60 omegaz = omegazDEG * PIGRECO /180;
// mostra le misure in gradi

62 printf ("%c\t%d\t%g\t%g\t%g\t%c\n", buffer [i], count ,
omegaxDEG ,

omegayDEG , omegazDEG , buffer [i + 15]);
64 // mostra le misure in radianti

printf ("%c\t%d\t%g\t%g\t%g\t%c\n", buffer [i], count ,
omegax ,

66 megay , omegaz , buffer [i + 15]);
i = 150;

68 } else
i = i + 1;

70 }

5.3 PWM and ADC on ARM9 processor

Pulse-width modulation (PWM) is a commonly used technique for controlling power
to inertial electrical devices, made practical by modern electronic power switches.
The average value of voltage (and current) fed to the load is controlled by turning
the switch between supply and load on and off at a fast pace: the longer the switch
is on compared to the off periods, the higher the power supplied to the load is. The
term duty cycle describes the proportion of “on” time to the regular interval or
“period” of time; a low duty cycle corresponds to low power, because the power is
off for most of the time. Duty cycle is often expressed in percent, 100% being fully
on. The main advantage of PWM is that power loss in the switching devices is very
low: when a switch is off there is practically no current, and when it is on, there is
almost no voltage drop across the switch, so power loss, being the product of voltage
and current, is thus in both cases close to zero. PWM also works well with digital
controls, which, because of their on/off nature, can easily set the needed duty cycle.

Pulse-width modulation uses a rectangular pulse wave whose pulse width is
modulated resulting in the variation of the average value of the waveform. If we
consider a pulse waveform f(t) with a low value ymin, a high value ymax and a duty
cycle D (see Figure 5.7), the average value of the waveform is given by:

ȳ = 1
T

∫ T

0
f(t)dt (5.2)

As f(t) is a pulse wave, its value is ymax for 0 < t < D ·T and ymin for D ·T < t < T ,

87

5 – Hardware test

Figure 5.7 – Example of PWM.

the Equation 5.2 then becomes:

ȳ = 1
T

(
∫ DT

0
ymaxdt+

∫ T

DT
ymindt) =

= D · T · ymax + T (1−D)ymin
T

=

= D · ymax + (1−D)ymin

(5.3)

This latter equation can be fairly simplified in many cases where ymin = 0 as
ȳ = D · ymax. From this, it is obvious that the average value of the signal ȳ is directly
dependent on the duty cycle D.

The simplest way to generate a PWM signal is the intersective method, which
requires only a sawtooth or a triangle waveform (easily generated using a simple
oscillator) and a comparator. When the value of the reference signal (the red sine
wave in Figure 5.8) is more than the modulation waveform (blue), the PWM signal
(magenta) is in the high state, otherwise it is in the low state.

With regard to the ADC, it is nothing more than an acronym for Analog to
Digital Converter: it is a device that uses sampling to convert a continuous quantity
to a discrete time representation in digital form. An ADC may also provide an
isolated measurement such as an electronic device that converts an input analog
voltage or current to a digital number proportional to the magnitude of the voltage or
current. The digital output may use different coding schemes. Typically the digital
output will be a two’s complement binary number that is proportional to the input,as
in this case. Generically, an ADC is characterized by its resolution (the number of
discrete values it can produce over the range of analog values), response type (linear
or logarithmic), quantization error (it is the difference between the original signal
and the digitized signal) and non-linearity (physical imperfections cause output to
deviate from a linear function of input).

88

5 – Hardware test

Figure 5.8 – A simple method to generate the PWM pulse train corresponding
to a given signal is the intersective PWM: the signal (here the red
sinewave) is compared with a sawtooth waveform (blue). When the
latter is less than the former, the PWM signal (magenta) is in high
state (1). Otherwise it is in the low state (0).

The CPU board adopted for 3STAR is the RD129 - ARM9 Embedded CPU (see
Figure 5.9(a)) produced by ELPA: it is an ARM9 CPU, designed to give good
performance at a very low price for this kind of item; the same company produces
also a development board (RD126, Figure 5.9(b)) for this CPU that gives the
possibility to make all operations more convenient, providing many inputs for various
devices. Features of this CPU are [18]:

Technical features:

• 32-bits ARM 9 CPU, clocked at 240MHz;
• 32MB of SDRAM (64MB optional) at 120MHz (32-bits interfaced);
• 64MB of on board Flash memory;
• 3 Serial interfaces;
• 2 USB host interfaces (1 switchable to USB device);
• 10-bits ADC converter;

89

5 – Hardware test

• IIC bus interface;
• 4 internal PWM timers;
• Watchdog timer;

Dimensions: very small sizes, 45x40x8 mm;

Power: 0.5W typical, 1W max; only a single 3.3Vdc 5% is required;

Operating temperature range: from -25◦C to +85◦C;

Development board features:

• 3.3V switching power supply;
• level translator for 2 RS232 serial interfaces;
• USB to Ethernet converter;
• USB Host connector;
• MMC or SD flash memory card connector;
• IIC bus eeprom;

5.3.1 Characterization
Before to perform PWM control, it is necessary to properly configure I/O CPU pins.
In this case, all operations are performed by reading/writing virtual ascii files located
into directory /sys/devices/platform/s3c2410-gpio/. There are different groups of
these files:

pin status files: with same name of pin (ex: g0), can be used to read or write the
pin status (0 or 1);

pin configuration files: with name of pin followed by suffix -cfg, can be used to
read or change the pin mode, that can be: input, output (not allowed on all
pins), fn1 or fn2 where fn1 is the main peripheral function of pin while fn2 is
the auxiliary function (only some pins have it);

pullup configuration file: with name of pin followed by suffix -pup, can be used
to read or change the pullup status (1=on, 0=off);

external interrupt configuration file: named “eintX-cfg”, it reflects the external
interrupt mode. It can have the values “rising”, “falling” or “both” and selects
which signal’s edge triggers the interrupt. These files appear only when relative
pins are configured for external interrupt function.

90

5 – Hardware test

(a) RD129 CPU.

(b) Development board RD126. (c) Development board RD126 with RD129
CPU.

Figure 5.9 – Some figures of CPU adopted and its development board.

The next step is to configure the timer drivers: they gives user access to internal
timers and can be used in 2 ways, to generate an external signal or to wait for a
defined time. All operations are performed by reading/writing virtual ascii files
located into directory /sys/devices/platform/um-timer.X/, where X ranges from 0
to 3 (timer 4 is used exclusively by UNIX’ scheduler). In this directory there are 3
virtual files:

frequency: sets the frequency (in Hz) you want to generate on dedicated pin. When
you write to this file, the duty-cycle is setted to 50%;

duty: sets the duty-cycle of the signal you want to generate on dedicated pin. Range
is from 0 to 1000;

wait: when written it programs the time required in microseconds and starts the
timer, when read waits until the programmed time expires.

To take measure from ADC pins, simply must read virtual ascii files located into
directory "/sys/devices/platform/s3c2410-adc/ainX, where X ranges from 0 to 7.

91

5 – Hardware test

Pins used as output for PWM are shown in Figure 5.10: they are # 8, # 10 and
12 for RD129 CPU and # 8, # 9 and # 10 for RD126 development board. Pins
used to read measures (ADC pins) are # 90, # 92, # 94, # 96, # 98, # 100, # 102
and # 104 for RD129 CPU and # 28, # 29, # 30, # 31, # 32, # 33, # 34 and
35 for RD126 development board. In Figure 5.11 it is possible to see the output

(a) RD129 CPU. (b) RD126 development board.

Figure 5.10 – Schema of pins of RD126 and RD129.

obtained with Listing 5.3 (it has been used a terminal to communicate with RD129
CPU installed on RD126 development board connected to pc through a serial-to-usb
converter) by varying duty cycle. The images are captured using the TDS2004C
Oscilloscope produced by Tektronix.

(a) Duty cycle = 1 (0.1%). (b) Duty cycle = 500 (50%). (c) Duty cycle = 999 (99.9%).

Figure 5.11 – PWM output from pins.

Listing 5.3 – Command used to try PWM output pin and ADC pin.
cd /sys/devices/platform/s3c2410-gpio REM path

2 echo fn1 > b1-cfg REM to properly set pin output

92

5 – Hardware test

cat b1-cfg REM to verify pin setting
4 cd /sys/devices/platform/um_timer .X REM X stands for 1,2 or

3
echo 2000 > frequency REM to set frequency

6 echo xxx > duty REM to set duty cycle , xxx stands for a
value between 1(that is 0.1%) and 999(that is 99,9%)

REM -------------------------
8 cd /sys/devices/platform/s3c2410-adc/ainX REM X stands for

0,1,2,3,4,5,6 or 7

The real characterization has been done using the ADCS board (see Figure 5.12) and
magnetic torquers used on e-st@r, because those of 3STAR has not yet been realized
(but presumably it will be very similar) and because there was a need to test the
behavior of the ARM CPU on a “real” electrical board and not on the development
board as they have very different circuits.

Figure 5.12 – ADCS board used to test PWM control with ARM9

The settings used to do this characterization and then implemented on board
are shown in Listing 5.4: in this way both PWM output and related ADC has been
tested to understand their behavior.

Listing 5.4 – C code used to properly test RD129 (PWM and ADC).
define PWM_1 "/sys/ devices / platform / um_timer .1/ frequency "

2 # define SET_PORT_PWM1 "/sys/ devices / platform /s3c2410 -gpio/b1 -
cfg"

93

5 – Hardware test

define PWM_2 "/sys/ devices / platform / um_timer .2/ frequency "
4 # define SET_PORT_PWM2 "/sys/ devices / platform /s3c2410 -gpio/b2 -

cfg"
define PWM_3 "/sys/ devices / platform / um_timer .3/ frequency "

6 # define SET_PORT_PWM3 "/sys/ devices / platform /s3c2410 -gpio/b3 -
cfg"

define PWM_DUTY1 "/sys/ devices / platform / um_timer .1/ duty"
8 # define PWM_DUTY2 "/sys/ devices / platform / um_timer .2/ duty"

define PWM_DUTY3 "/sys/ devices / platform / um_timer .3/ duty"
10 # define ADC_1 "/sys/ devices / platform /s3c2410 -adc/ain0"

define ADC_2 "/sys/ devices / platform /s3c2410 -adc/ain1"
12 # define ADC_3 "/sys/ devices / platform /s3c2410 -adc/ain2"

14 FILE *pwm1;
FILE * pwmset1 ;

16 FILE *pwm2;
FILE * pwmset2 ;

18 FILE *pwm3;
FILE * pwmset3 ;

20 FILE * pwmduty1 ;
FILE * pwmduty2 ;

22 FILE * pwmduty3 ;
FILE *adc1;

24 FILE *adc2;
FILE *adc3;

26 FILE * risultati ;

28 printf ("QUI COMINCIA LA PROCEDURA PER TESTARE PWM E ADC DELL ’
ARM RD129\n");

printf (" Indicare la frequenza [Hz] per il PWM -1: ");
30 scanf("%d", & frequepwm1);

printf (" Indicare la frequenza [Hz] per il PWM -2: ");
32 scanf("%d", & frequepwm2);

printf (" Indicare la frequenza [Hz] per il PWM -3: ");
34 scanf("%d", & frequepwm3);

// ----inizio scrittura frequenze su file virtuali ----
36 pwmset1 = fopen(SET_PORT_PWM1 , "w");

if(pwmset1 == NULL) {
38 printf (" mancata apertura gpio\n");

}
40 else {

fprintf (pwmset1 ,"fn1");
42 }

94

5 – Hardware test

fclose (pwmset1);
44 pwm1 = fopen(PWM_1 , "w");

if(pwm1 == NULL) {
46 printf (" mancata apertura \n");

}
48 else {

fprintf (pwm1 ,"%d", frequepwm1);
50 }

fclose (pwm1);
52

pwmset2 = fopen(SET_PORT_PWM2 , "w");
54 if(pwmset2 == NULL) {

printf (" mancata apertura gpio\n");
56 }

else {
58 fprintf (pwmset2 ,"fn1");

}
60 fclose (pwmset2);

pwm2 = fopen(PWM_2 , "w");
62 if(pwm2 == NULL) {

printf (" mancata apertura \n");
64 }

else {
66 fprintf (pwm2 , frequepwm2);

}
68 fclose (pwm2);

70 pwmset3 = fopen(SET_PORT_PWM3 , "w");
if(pwmset3 == NULL) {

72 printf (" mancata apertura gpio\n");
}

74 else {
fprintf (pwmset3 ,"fn1");

76 }
fclose (pwmset3);

78 pwm3 = fopen(PWM_3 , "w");
if(pwm3 == NULL) {

80 printf (" mancata apertura \n");
}

82 else {
fprintf (pwm3 , frequepwm3);

84 }
fclose (pwm3);

95

5 – Hardware test

86 // ----fine scrittura frequenze su file virtuali ----
// ----inizio scrittura duty cycle su file virtuali ----

88 risultati = fopen(" risultati ", "w+");
if(risultati <0) {

90 printf ("File dei risultati non aperto correttamente \n");
}

92 else {
for(i=1;i <=999; i++)

94 {
pwmduty1 =fopen (PWM_DUTY1 , "w");

96 if(pwmduty1 == NULL) {
printf (" mancata apertura \n");

98 }
else {

100 duty1=i;
fprintf (pwmduty1 ,"%d", duty1);

102 }
fclose (pwmduty1);

104 adc1=fopen (ADC_1 , "r");
if(adc1 == NULL) {

106 printf (" Errore apertura ADC1\n");
}

108 else {
fscanf (adc1 , "%d", & misura1);

110 }
fclose (adc1);

112 pwmduty2 =fopen (PWM_DUTY2 , "w");
if(pwmduty2 == NULL) {

114 printf (" mancata apertura \n");
}

116 else {
duty2=i;

118 fprintf (pwmduty2 ,"%d", duty2);
}

120 fclose (pwmduty2);
adc2=fopen (ADC_2 , "r");

122 if(adc2 == NULL) {
printf (" Errore apertura ADC2\n");

124 }
else {

126 fscanf (adc2 , "%d", & misura2);
}

128 fclose (adc2);

96

5 – Hardware test

pwmduty3 =fopen (PWM_DUTY3 , "w");
130 if(pwmduty3 == NULL) {

printf (" mancata apertura \n");
132 }

else {
134 duty3=i;

fprintf (pwmduty3 ,"%d", duty3);
136 }

fclose (pwmduty3);
138 adc3=fopen (ADC_3 , "r");

if(adc3 == NULL) {
140 printf (" Errore apertura ADC3\n");

}
142 else {

fscanf (adc3 , "%d", & misura3);
144 }

fclose (adc3);
146 }

fprintf (risultati ,"%d\t%d\t%d\t%d\t%d\t%d\n", duty1 ,
misura1 ,duty2 , misura2 ,duty3 , misura3);

148 printf ("%d\t%d\t%d\t%d\t%d\t%d\n", duty1 , misura1 ,duty2 ,
misura2 ,duty3 , misura3);

usleep (100000) ;
150 fclose (risultati);

}
152 return 0;

}

Results in Figure 5.13 show an approximately linear trend of the ADC with
respect to duty cycle, except for the initial part (corresponding to low duty cycle
values) where instead is present a saturation: this problem will be fixed on the
3STAR ADCS board with different circuits so as to avoid reaching this saturation;
in Figure 5.14 it is possible to see the relationships between duty cycle values and
the corresponding measured voltages and currents at PWM outputs, using as loads
the magnetic torquers used for e-st@r (they have 176 coils and a roughly square area
of 0.0048m2).

5.3.2 C implementation

After the characterization, has been created a C program that can set the values of
duty cycle (on the basis of controls calculated as explained in Section 4.5) and to
detect ADC measures fully automated with without action from the outside through

97

5 – Hardware test

Figure 5.13 – Characterization curve Duty cycle - ADC of ADCS board.

Figure 5.14 – Characterization curve Duty cycle - Voltage & Current of ADCS
board.

98

5 – Hardware test

the terminal. The script created (Listing 5.5) is similar to the previous one, but it
does not include testing procedure.

Listing 5.5 – C code used to properly set PWM and ADC.
1 # define PWM_1 "/sys/ devices / platform / um_timer .1/ frequency "

define SET_PORT_PWM1 "/sys/ devices / platform /s3c2410 -gpio/b1 -
cfg"

3 # define PWM_2 "/sys/ devices / platform / um_timer .2/ frequency "
define SET_PORT_PWM2 "/sys/ devices / platform /s3c2410 -gpio/b2 -

cfg"
5 # define PWM_3 "/sys/ devices / platform / um_timer .3/ frequency "

define SET_PORT_PWM3 "/sys/ devices / platform /s3c2410 -gpio/b3 -
cfg"

7 # define PWM_DUTY1 "/sys/ devices / platform / um_timer .1/ duty"
define PWM_DUTY2 "/sys/ devices / platform / um_timer .2/ duty"

9 # define PWM_DUTY3 "/sys/ devices / platform / um_timer .3/ duty"
define ADC_1 "/sys/ devices / platform /s3c2410 -adc/ain0"

11 # define ADC_2 "/sys/ devices / platform /s3c2410 -adc/ain1"
define ADC_3 "/sys/ devices / platform /s3c2410 -adc/ain2"

13

FILE *pwm1;
15 FILE * pwmset1 ;

FILE *pwm2;
17 FILE * pwmset2 ;

FILE *pwm3;
19 FILE * pwmset3 ;

FILE * pwmduty1 ;
21 FILE * pwmduty2 ;

FILE * pwmduty3 ;
23 FILE *adc1;

FILE *adc2;
25 FILE *adc3;

FILE * risultati ;
27

pwmset1 = fopen(SET_PORT_PWM1 , "w");
29 if(pwmset1 == NULL) {

printf (" mancata apertura gpio\n");
31 }

else {
33 fprintf (pwmset1 ,"fn1");

}
35 fclose (pwmset1);

pwm1 = fopen(PWM_1 , "w");

99

5 – Hardware test

37 if(pwm1 == NULL) {
printf (" mancata apertura \n");

39 }
else {

41 fprintf (pwm1 ,"%d", frequepwm1);
}

43 fclose (pwm1);

45 pwmset2 = fopen(SET_PORT_PWM2 , "w");
if(pwmset2 == NULL) {

47 printf (" mancata apertura gpio\n");
}

49 else {
fprintf (pwmset2 ,"fn1");

51 }
fclose (pwmset2);

53 pwm2 = fopen(PWM_2 , "w");
if(pwm2 == NULL) {

55 printf (" mancata apertura \n");
}

57 else {
fprintf (pwm2 , frequepwm2);

59 }
fclose (pwm2);

61

pwmset3 = fopen(SET_PORT_PWM3 , "w");
63 if(pwmset3 == NULL) {

printf (" mancata apertura gpio\n");
65 }

else {
67 fprintf (pwmset3 ,"fn1");

}
69 fclose (pwmset3);

pwm3 = fopen(PWM_3 , "w");
71 if(pwm3 == NULL) {

printf (" mancata apertura \n");
73 }

else {
75 fprintf (pwm3 , frequepwm3);

}
77 fclose (pwm3);

risultati = fopen(" risultati ", "w+");
79 if(risultati <0) {

100

5 – Hardware test

printf ("File dei risultati non aperto correttamente \n");
81 }

else {
83 pwmduty1 =fopen (PWM_DUTY1 , "w");

if(pwmduty1 == NULL) {
85 printf (" mancata apertura \n");

}
87 else {

fprintf (pwmduty1 ,"%d", duty1);
89 }

fclose (pwmduty1);
91 adc1=fopen (ADC_1 , "r");

if(adc1 == NULL) {
93 printf (" Errore apertura ADC1\n");

}
95 else {

fscanf (adc1 , "%d", & misura1);
97 }

fclose (adc1);
99 pwmduty2 =fopen (PWM_DUTY2 , "w");

if(pwmduty2 == NULL) {
101 printf (" mancata apertura \n");

}
103 else {

fprintf (pwmduty2 ,"%d", duty2);
105 }

fclose (pwmduty2);
107 adc2=fopen (ADC_2 , "r");

if(adc2 == NULL) {
109 printf (" Errore apertura ADC2\n");

}
111 else {

fscanf (adc2 , "%d", & misura2);
113 }

fclose (adc2);
115 pwmduty3 =fopen (PWM_DUTY3 , "w");

if(pwmduty3 == NULL) {
117 printf (" mancata apertura \n");

}
119 else {

fprintf (pwmduty3 ,"%d", duty3);
121 }

fclose (pwmduty3);

101

5 – Hardware test

123 adc3=fopen (ADC_3 , "r");
if(adc3 == NULL) {

125 printf (" Errore apertura ADC3\n");
}

127 else {
fscanf (adc3 , "%d", & misura3);

129 }
fclose (adc3);

131 }
fprintf (risultati ,"%d\t%d\t%d\t%d\t%d\t%d\n", duty1 ,

misura1 ,duty2 , misura2 ,duty3 , misura3);
133 usleep (100000) ;

fclose (risultati);
135 return 0;

}

102

Chapter 6

Hardware In the Loop

Hardware-in-the-loop (HIL) simulation is a technique used in the development and
test of complex real-time embedded systems: HIL simulation provides an effective
platform by adding the complexity of the plant under control to the test, through a
mathematical representation of all related dynamic systems, to the test platform.
These mathematical representations are referred to as the “plant simulation” and
the embedded system to be tested interacts with this plant simulation.

An HIL simulation includes electrical emulation of sensors and actuators. These
electrical emulations act as the interface between the plant simulation and the
embedded system under test. The value of each electrically emulated sensor is
controlled by the plant simulation and is read by the embedded system under
test (feedback). Likewise, the embedded system under test implements its control
algorithms by outputting actuator control signals. Changes in the control signals
result in changes to variable values in the plant simulation.

In many cases, the most effective way to develop an embedded system is to
connect the embedded system to the real plant while in other cases, HIL simulation
is more efficient. The metric of development and test efficiency is typically a formula
that includes the following factors:

cost: the cost of the approach will be a measure of the cost of all tools and effort;

duration: the duration of development and test affects the time-to-market for a
planned product;

safety: the safety factor and duration are typically equated to a cost measure;

feasibility: for 3STAR project, probably this is the most important feature just
because a satellite spends a large part of the operating life in an environment
that is difficult to reproduce on the ground.

Specific conditions that warrant the use of HIL simulation include the following:

103

6 – Hardware In the Loop

enhancing the quality of testing: usage of HIL enhances the quality of the test-
ing by increasing the scope of the testing. An ideal condition to test the
embedded system is to test it against the real plant but most of the time real
plant itself imposes limitations in terms of the scope of the testing;

tight development schedules: often the tight development schedules do not allow
embedded system testing to wait for a prototype to be available;

high-burden-rate plant: in many cases, the plant is more expensive than a high
fidelity, real-time simulator and therefore has a higher-burden rate. Therefore,
it is more economical to develop and test while connected to a HIL simulator
than the real plant.

For 3STAR project, the Hardware In the Loop is particularly useful because
the satellite will operate in an hardly reproducible environment, that is the space.
Obviously more accurate is the model more accurately the response of the system
will be. Only with an HIL simulation is possible to reproduce all the environmental
conditions that the satellite will face in its operative life, which would be more
expensive and more difficult to realize that without an HIL simulation. It is easily
understandable the impossibility to test the 3STAR ADCS in our laboratory without
the HIL simulation, because the laboratory should be equipped to recreate the same
conditions satellite would experience in orbit, that are:

• vacuum;

• apparent Sun position;

• low gravity;

• Earth magnetic field;

• orbital speed.

Using HIL simulation it is possible to avoid these problems by implementing a
numerical model for parts that are not physically realizable.

To verify the system via HIL simulation two components can be identified:

test object: ADCS board with ARM RD129. It must be able to receive data from
sensors, to process and filter them to determine attitude and at the end to
compute control;

simulated system: physical parts and environment, comprehensive of dynamics
and kinematics of the satellite, sensors (IMU, magnetometer, solar panels as sun
sensors) and actuators (magnetic torquers and reaction wheel). All simulated
parts are:

104

6 – Hardware In the Loop

• dynamics and kinematics;
• IMU;
• magnetometer;
• solar panels;
• orbital position;
• magnetic torquers (coils);
• reaction wheel.

Knowing the orbital position it is possible to obtain the local sun vector and,
together with the simulated magnetometer, the local magnetic field, while the
simulated IMU gives the angular velocities of the satellite. In the same way, knowing
the sun vector, it is possible to calculate the power fluxes and the temperatures
on the solar panels. Combining this data, ARM is able to determine attitude, to
compare it with desired attitude and so to compute necessary control to reach the
target.

The configuration adopted for HIL simulation (whose design has been done by
Lorenzo Feruglio, MSc student of Aerospace Engineering) is shown in Figure 6.1,
where starting from the left is possibile to see:

simulator console: it is the computer on which the HIL (or SIL) simulation is run;

core: simulator core has been used to correctly launch the process for HIL simulation
in hard real-time mode (here is shown only the scheduler, but there are also
other modules). Links between modules in the core and in the HIL process are
software links;

HIL process: it includes the parts that need to be simulated, that is environment,
dynamics, kinematics, sensors and actuators. Its operation is managed by the
scheduler and it transmits to the ARM RD129, through serial port SAC0, data
(angular velocity and Earth magnetic field) required for determining attitude
and for calculating necessary control to reach desired configuration;

ARM RD129: as said before, this is the test object so is tested the goodness of
the algorithms of attitude determination and control. Actually it send data
(duty cycle for magnetic torquers and reaction wheel) using debug port to HIL
process to operate the parts simulated, but in future HIL simulations the real
IMU and real magnetic torquers will be added.

In Figure 6.2 is possible to see the real configuration: on the left there is a laptop
running HIL process, on the center the ADCS board with ARM RD129 while on the

105

6 – Hardware In the Loop

Figure 6.1 – Configuration of HIL simulation.

right there is the qualification model of e-st@r with magnetic torquers used for this
simulation.

Before of the HIL simulation, a SIL simulation has been realized (Figure 6.3): it
is possible to recognize that both the HIL process and the control process are coded
in target software language but are run on the simulator machine. The inter-process
communication has been implemented using named pipes to simulate the two serial
ports and cables on which the normal simulation would transmit data. This test step
has the potentiality of allowing several tests being run at once: in this configuration,
the only thing needed was a UNIX PC to run an instance of this simulation. This
way, it has been possible to run up to 5 instances (this number dictated by the
availability of PC in the laboratory). It has not been tried to run more than one
instance per computer, despite it being possible, for stability reason. Once verified
that the entire software (HIL process and control software on ARM RD129) has no
problems (bugs), it is proceeded to validate the configuration on a Hardware in the
Loop simulation.

6.1 C control logic
In previous chapter, control theory and its Matlab implementation have been analysed,
now there is a brief description of the entire control logic used for HIL simulation:

106

6 – Hardware In the Loop

Figure 6.2 – Photo of HIL simulation.

Figure 6.3 – Configuration of SIL simulation.

107

6 – Hardware In the Loop

it was completely written in C, but a part of functions performed is elaborated by
HIL process (then they are compiled to run on UNIX platform) and a part to be
performed by ARM RD129 (so they cross-compiled for embedded UNIX).

The outputs of the program for the attitude control are the commands for the
magnetic torquers and reaction wheel given as percentage of the maximum applicable
control, that is duty cycle, while needed inputs are:

time: given by the ARM RD129 as date and milliseconds from the power-up (it is
very important to synchronize functions execution between the HIL process
and ARM RD129);

magnetic field: in Body coordinates given by the magnetometer (simulated by HIL
process);

inertial angular velocity: in Body coordinates given by the IMU (simulated by
HIL process);

norad: it is a vector containing orbital parameters and it is evaluated by HIL
process;

qd: it is desired attitude, expressed by quaternion;

Conceptually, the simulation follows this logical process (see Figure 6.4):

1. only at first cycle, control software send a string through debug port with
default values, its task is to activate the HIL process;

2. control software, loaded on ARM processor, starts integration with initial data
set on its memory and then it determines ideal control;

3. real controls (duty cycle) are calculated by PWM function and sent via hardware
link (a debug port) to the simulator, more precisely to the magnetic torquers
model and to the reaction wheel model;

4. output of these modules are used by dynamics and kinematics modules, where
integrations are performed;

5. results of this integrations are passed to the IMU model (see Section 4.3), that
takes as input the ideal angular velocities obtained from the integrations and
gives as output measured velocities;

6. at the same time magnetometer model(see Section 4.2) works on input (ideal
Earth magnetic field calculated with a proper function) to obtain a measured
output, which is;

108

6 – Hardware In the Loop

7. loop is now closed, since the measured velocities from the IMU and measured
Earth magnetic field from magnetometer are sent via hardware link (a serial
cable) to the ARM, on which is loaded attitude determination algorithm.

For this test the construction of the string sent from HIL process to ARM RD129
is slightly different from that seen previously (that is the string sent from IMU to
ARM RD129, Table 6.1), because for simulation purpose it has been necessary to
include magnetometer measurements: they have been added to this string, after the
Z (ending character of previous string) and followed by a M that symbolize the end
of that portion of string. Last piece of string includes the communication of the
dt needed for integration (in reality this is compared with that calculated by the
processor) and the new ending character is T.

Binary string from HIL to ARM
byte 0 1 2 3 4 5 6 7 8 9
data A c1 c2 ax1 ax2 ay1 ay2 az1 az2 gx1

10 11 12 13 14 15 16 17 18 19
gx2 gy1 gy2 gz1 gz2 Z Bx1−1 Bx1−2 Bx1−3 Bx1−4

20 21 22 23 24 25 26 27 28 29
Bx2−1 Bx2−2 Bx2−3 Bx2−4 Bx3−1 Bx3−2 Bx3−3 Bx3−4 M dt1

30 31 32 33 34 35 36 37
dt2 dt3 dt4 dt5 dt6 dt7 dt8 T

Table 6.1 – Binary string from HIL process to ARM RD129.

On the contrary, string sent from ARM RD129 to HIL process to contains only 4
starting character (H, I, T, L) that allow detection of the string and then the duty
cycle values determined by ARM RD129 with control algorithm. Its structure is
shown in Table 6.2).

Binary string from ARM to HIL
byte 0 1 2 3 4 5 6 7 8 9 10 11
data H I T L dcMTx1 dcMTx2 dcMTy1 dcMTy2 dcMTz1 dcMTz2 dcRW1 dcRW2

Table 6.2 – Binary string from ARM RD129 to HIL process.

Now the different functions used will be analyzed, following the logic flow in
Figure 6.4.

6.1.1 Earth magnetic field and orbit propagation

109

6 – Hardware In the Loop

Figure 6.4 – Timeline of functions performed by HIL simulation.

110

6 – Hardware In the Loop

Listing 6.1 – Earth magnetic field and orbit propagation functions.
(Sb[3] ,Bb[3],LL [3]) = magf(norad [8],anno ,t,q[4])

The calculation of the orbital position as latitude, longitude and altitude (LL vector)
is done by the same code that calculate the sun vector (Sb vector) and magnetic field
vector (Bb vector) in the Body reference frame. However during the first cycle of
the program this is not possible because there is not information about the angular
position given by the quaternion (q vector) so the code evaluate a magnetic field
vector based on a casual quaternion.

The calculation of the orbital position is the same as proceeding seen in Sec-
tion 2.3.2.1 and the magnetic field vector in local coordinates (NED) is obtained from
the WMM as in Section 2.4.1. The rotation from the NED to the Body reference
frame is done with these sequential rotations (previously defined in Section 2.1.1 and
Section 2.1.2):

• from NED to ECEF;

• from ECEF to Inertial;

• from Inertial to Orbital;

• from Orbital to Body.

Regarding the sun vector calculation, is used a model that gives the vector
in NED coordinates and then it is rotated, as the magnetic field vector, in Body
coordinates. The algorithm for the calculation of the sun vector needs as inputs the
satellite position as latitude, longitude and altitude and gives as outputs the three
components of the vector in the local reference system (NED) using an algorithm
using an algorithm that computes:

• Julian date (jd) and Julian day (d);

• Keplerian elements of the Sun;

• auxiliary angle;

• rectangular coordinates in the ecliptic plane;

• distance and true anomaly;

• Sun longitude;

• rectangular coordinates of the ecliptic;

• rotation of the coordinates to the equatorial rectangular reference frame;

111

6 – Hardware In the Loop

• conversion to right ascension and declination;

• number of days from the 1/01/2000;

• local sidereal time;

• substitution of the right ascension with the hours angle;

• conversion to rectangular coordinates;

• rotation along the east-west axis;

• Azimuth e Elevation;

• NED coordinates.

6.1.2 Dynamics, kinematics and determination of q
These functions are a translation in C code of equations (omitted here) seen in
Section 3.3, so it uses all torques acting on satellite to evaluate its behavior (an-
gular velocity) and then, after an appropriate integration, it determines attitude
(quaternion).

6.1.3 Determination initial q

Listing 6.2 – Determination initial q function.
1 qini [4] = detq(B[3],S[3],LL[3],anno ,t,norad [8])

The attitude determination based on measures of magnetic field and sun vector is
necessary because the satellite, following the CubeSat standard, will be switched-on
some minutes after being released by the P-POD. This sets the problem to know
the initial attitude of 3STAR (qini vector). The calculation of the attitude of the
satellite is based on the work of Markley [19]: it is possible, from two measured
vectors in a reference systems and knowing the same vectors in another reference
system, calculate the rotation present between these two reference systems.

6.1.4 Kalman filter

Listing 6.3 – Kalman filter function.
1 (qK[4] , qKdot [4], wKib [4]) = kalman (m[3], wMib [3],dt ,Bb[3], Trw)

112

6 – Hardware In the Loop

This function is a (not so simply) translation in C code of theory and Matlab
implementation analyzed in Section 4.4: it uses as input controls (m vector, that
is dipole moment of mangetic torquers, and Trw, that is reaction wheel torque),
angular velocity measured (wMib vector) to evaluate quaternion vector qK, derivative
of quaternion vector qKdot and angular velocity wKib.

6.1.5 Control

Listing 6.4 – Control function.
1 (m[3] , Trw) = controllosat (qc[4],qK[4], qKdot [4], wKib [3],Bb [3])

As previously seen for MATLAB®-Simulink®model, there are two different algorithms
for attitude control, one for the detumbling phase (PD controller) and the other
for the stabilization phase (LQR controller) of the satellite. Obviously algorithms
implemented are the same seen in Section 4.5. Regarding the choice of which
controller is used, the value of angular velocity of the satellite is analyzed with
Listing 6.5: if at least one component exceeds the threshold, the controller uses the
detumbling algorithm, otherwise goes to the stabilization one.

Listing 6.5 – Control selector code.
1 for(ii =0;ii <3; ii ++){

if(w[ii]<0){
3 ww[ii]=-w[ii];

}else{
5 ww[ii]=w[ii];

}
7 }

if(ww [0] >0.001 && ww [1] >0.001 && ww [2] >0.001){
9 //PD detumbling controller

}else{
11 // stabilization controller

}

All controls evaluated, for both magnetic torquers and reaction wheel, have a
saturation: for magnetic torquer tha saturation is on maximum dipole moment while
for reaction wheel it is on supply voltage (Listing 6.6).

Listing 6.6 – Control saturation code.
for(ii =0;ii <3; ii ++){

2 if(m[ii] >0.5){
m[ii] = 0.5;

4 }

113

6 – Hardware In the Loop

if(m[ii] < -0.5){
6 m[ii] = -0.1;

}
8 }

if (Vrw > Vsat) {
10 Vrw = Vsat;

}
12 if (Vrw < Vsat) {

Vrw = -Vsat;
14 }

6.1.6 PWM

Listing 6.7 – PWM function.
dc [4] = torquers (m[3], Vrw)

The last step of the code is the calculation, from ideal control values, of the duty-cycle
to be applied to magnetic torquers and reaction wheel to obtain the desired controls:
the code is based on the discretization of the controls, considering the maximum
available current for magnetic torquers and maximum supply voltage for reaction
wheele, on an equispaced range from 0 to 1000, where the value 500 corresponds
with null control. Indeed, because PWM pins of ARM RD129 allow only a value
from 1 to 999, minimum control (duty cycle equal to 0) and maximum control (duty
cycle equal to 1000) are slightly changed as in Listing 6.8.

Listing 6.8 – PWM refining code.
1 if (dc [0]==0)

dc [0]=1;
3 if (dc [1]==0)

dc [1]=1;
5 if (dc [2]==0)

dc [2]=1;
7 if (dc [3]==0)

dc [3]=1;
9 if (dc [0]==1000)

dc [0]=999;
11 if (dc [1]==1000)

dc [1]=999;
13 if (dc [2]==1000)

dc [2]=999;
15 if (dc [3]==1000)

114

6 – Hardware In the Loop

dc [3]=999;

6.2 HIL procedure
The implementation of the algorithms previously defined on the 3STAR ADCS unit
and on HIL simulation laptop completes the preparations for the HIL simulation. The
procedure for the 3STAR HIL simulation is summarized in Table 6.3 and it defines
the verification activity flow and it provides detailed instructions about specific steps
QA personnel has to follow.

Table 6.3 – ADCS HIL simulation procedure.

step Activity description
1 Test set up:

take the antistatic pad, lay it on the table, and make all the necessary
electrical connections to ground;
wear the antistatic bracelet;
wear the latex gloves.

2 Assembly:
connect the four rods in the apposite housings;
insert four spacers;
install the card on the appropriate support structure for the test.

3 Connections:
start simulation PC;
connect cable 0-3(0) to USB0 port on simulation laptop;
connect cable 2 to USB2 port on simulation laptop;
connect cable 2 to IMU port on the ADCS board;
connect cable 0-3(out) to RS232 adapter;
connect RS232 adapter output cable on connector C1 on the ADCS;
connect cable debug to USB0 por on debug ADCS laptop;
connect power cable 1 of power pack to 5V pin of ADCS board
(settings: 5[V], 0.5[A]);
connect power cable 2 of power pack to 3.3V pin of ADCS board
(settings: 3.3[V], 0.5[A]);
connect power cable 3 of power pack to RS232 adapter (settings:
4[V], 0.03[A]);
open minicom terminal on debug ADCS laptop on ttyUSB0 port.

Table 6.3: continues on next page

115

6 – Hardware In the Loop

Table 6.3: continues from the previous page

step Activity description
4 Start test:

turn on power pack;
start HIL code on simulation laptop
start ADCS code on satellite through minicom on ttyUSB0

6.3 Results
The analysis of the Hardware In the Loop simulation results for the 3STAR ADCS
is now considered. Test data are collected through three different channels:

• HIL process log file, saved on HIL simulation laptop;

• ARM RD129 log file, saved directly on ARM;

• ADCS debug screen, it shows the instantaneous ADCS status and it does not
have a log file but it allows the system debug and to control correct behavior
of the ADCS program compared to the simulations.

A simulation of about 28 hours has been performed in real time via Hardware In the
Loop simulation and the attitude trend obtained is reported in Figure 6.5.

Figure 6.5 – Attitude trend obtained via HIL simulation (ARM RD129 log file).

As noticeable from the curves reported above the HIL simulation gives a behavior
similar to that obtained with the MATLAB®-Simulink®simulations of Section 4.6.

116

6 – Hardware In the Loop

Obviously these are approximated trends because data are saved every fixed times
and not continuously as in MATLAB®-Simulink®. In addition the differences are
due, however, by the fact that the presence of real components introduces a series of
problems related to the compatibility and the delays in communications.

Figure 6.6 – Quaternion trend obtained via HIL simulation (ARM RD129 log file).

Figure 6.7 – Angular velocity trend obtained via HIL simulation (ARM RD129 log
file).

117

Chapter 7

Conclusions

The ADCS is a limit of CubeSats for future commercial applications, as to ac-
commodate a paying payload is necessary to ensure a certain pointing accuracy.
In anticipation of use of CubeSats, as well as for scientific purposes but also for
commercial purposes, the creation of an active ADCS is a fundamental point.

An active Attitude Determination and Control System for nanosatellite has
been developed at the Systems and Technologies for Aerospace Research (STAR)
laboratory of DIMEAS; individual components and entire subsystem have been
tested via Hardware In the Loop simulation.

A simulation model of the complete system was carried on MATLAB®-Simulink®to
study the behavior of the satellite and also to optimize different algorithms (in
particularly control algorithms) before the future implementation on board.

Finally, after a test phase of individual equipments, like Inertial Measurement
Unit (Atomic IMU 6 Degrees of Freedom) and microprocessor (ARM RD129), ADCS
control logic has been installed on a prototype of 3STAR ADCS board and tested
with an Hardware In the Loop simulation.

The results, those of MATLAB®-Simulink®simulations and those of HIL simu-
lation, are analyzed and show a good behavior, with stabilization time and power
consumption not very high and therefore acceptable.

Starting from models obtained and components tested, is possible to optimize
ADCS improving them, eg. increasing the complexity of models or introducing
voting functions, always using HIL simulation to properly observe system behavior;
moreover, an optimization of the satellite ADCS is possible both for what the power
consumption and the manoeuvres capability are concerned.

118

Bibliography

[1] The CubeSat Program (2009), CubeSat Design Specification Rev. 12, California
Polytechnic State University.

[2] Darío Hermida, Jorge Iglesias and Marcos Arias (2010), HUMSAT mission
requirements document, HUM-22000-MRD-001-UVIGO, Universidade de Vigo.

[3] Darío Hermida, Jorge Iglesias and Marcos Arias (2010), HUMSAT system re-
quirements document, HUM-22000-SRD-001-UVIGO, Universidade de Vigo.

[4] Jean Meeus (2005), Astronomical algorithms, Hardbound.
[5] ESA (2005), Science programme, http://www.esa.int/esaSC/.
[6] Sabrina Corpino (2009), Sistemi spaziali, Politecnico di Torino.
[7] Nicole Viola (2006), Modellazione, simulazione e sperimentazione di sistemi

aerospaziali, Politecnico di Torino.
[8] British Geological Survey (2010), Overview of Geomagnetism, http://www.

geomag.bgs.ac.uk/education/earthmag.html.
[9] ECSS Secretariat ESA-ESTEC (2008), ECSS-E-ST-10-04C, Requirements &

Standards Division Noordwijk, The Netherlands..
[10] Alan C. Tribble (2003), The Space Environment: Implications for Spacecraft

Design, Princeton University Press.
[11] NOAA National Geophysical Data Center (2009), World Magnetic Model 2010-

2015, http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml.
[12] Stefan Maus, Susan Macmillan, Susan McLean, Brian Hamilton, Manoj Nair,

Alan Thomson and Craig Rollins (NGA) (2009), The US/UK World Magnetic
Model for 2010-2015, NOAA National Geophysical Data Center.

[13] J. R. Wertz (1994), Spacecraft Attitude Determination and Control - 1st Edition,
Kluwer Academic Publishers.

[14] The MathWorks Inc. (2012), Matlab R2012a Documentation, http://www.
mathworks.it/help/toolbox/control/ref/kalman.html.

[15] Pages 371-372 (2009), Journal of Aerospace Engineering: Proceedings of the
Institution of Mechanical En- gineers Part G, Professional Engineer Publishing.

[16] G. Baldo Carvalho, S. Theil and H. Koiti Kuga. (2009), IMU: generic model
development approach, V Simpòsio Brasileiro de Engenharia Inercial.

119

http://www.esa.int/esaSC/
http://www.geomag.bgs.ac.uk/education/earthmag.html
http://www.geomag.bgs.ac.uk/education/earthmag.html
http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
http://www.mathworks.it/help/toolbox/control/ref/kalman.html
http://www.mathworks.it/help/toolbox/control/ref/kalman.html

Bibliography

[17] SparkFun Electronics (2012), Atomic IMU 6 Degrees of Freedom, http://www.
sparkfun.com/products/9812.

[18] ELPA (2011), CPU Board RD129 manual, http://www.elpa.it/rd129it.
html.

[19] F. Landis Markley. (2002), Fast quaternion attitude estimation from two vector
measurements, NASAs Goddard Space Flight Center, Guidance, Navigation and
Control Systems Engineering Branch.

120

http://www.sparkfun.com/products/9812
http://www.sparkfun.com/products/9812
http://www.elpa.it/rd129it.html
http://www.elpa.it/rd129it.html

	Sommario
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Listings
	Acronyms
	Introduction
	The CubeSat project
	3STAR project
	Introduction and background
	Mission statement
	Mission objectives
	Mission scenario
	Mission architecture
	Requirements and functional analysis
	Mission profile and preliminary operative modes

	Definition and reference model
	Reference frames
	Inertial Reference Frame
	Earth-Centered Inertial (ECI) frame

	Non-Inertial Reference Frame
	Earth-Centered Earth-Fixed (ECEF) frame
	North-East-Down (NED) frame
	Orbital frame
	Body frame

	Attitude representation
	Euler Angles
	Quaternions

	Orbit
	Orbital parameters
	How to determine the orbit?
	Orbit propagation
	NORAD

	Earth's magnetic field
	Model
	Effects on satellites

	Control theory
	Main control strategies
	Types of Controllers

	System design
	Requirements
	Functional analysis
	Mathematical model
	Dynamics
	Kinematics
	Torques acting on 3STAR
	Disturbance from the Earth's gravitational field
	Disturbance from atmospheric drag
	Disturbance from the satellite's magnetic residual
	Control with magnetic torquers
	Control with reaction wheels

	Trade-off of possible configurations

	Development of the model, simulations and results
	Linearization of the mathematical model
	Kinematics
	Rotation matrix
	Angular velocity
	Gravitational torque
	Magnetic torquer
	Reaction wheel
	Complete model

	Magnetometer
	IMU
	Kalman filter
	Generic dynamic system model
	Equations
	Predict
	Update

	Results

	Controls
	Detumbling
	Stabilization
	Selector

	Complete model

	Hardware test
	Brief description of ARM architecture and C programming language
	Inertial Measurement Unit
	Test bench
	Characterization
	C implementation

	PWM and ADC on ARM9 processor
	Characterization
	C implementation

	Hardware In the Loop
	C control logic
	Earth magnetic field and orbit propagation
	Dynamics, kinematics and determination of q
	Determination initial q
	Kalman filter
	Control
	PWM

	HIL procedure
	Results

	Conclusions
	Bibliography

